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Introduction.

HE present paper attempts a critical examination of

some of the difficulties which surround the appl

cation of: the law of equipartition of energy to the energy of

wave motion in the aether or other continuous media. These
difficulties manifest themselves most clearly in connexion
with the problem of determining the law of partition of

radiant energy inside a uniform-temperature enclosure.

Accordingly it is with this particular problem that we shall

be mainly concerned.

2. Let two or more bodies, originally at different tempe-
ratures, be supposed placed inside a closed chamber whose

* Communicated by the Author.

Phil. Mag. S. 6. Vol. 17. No. 98. Feb. 1909. E



230 Prof. J. H. Jeans on Temperature-Radiation

walls reflect energy perfectly. These conditions cannot be
realized experimentally; so that it is not known what would
happen. But it is commonly supposed that the temperatures
of the bodies would equalize * by radiation, so that after an
infinite time the bodies would all be at the same tempe-
rature T ; also the aether, the vehicle of energy from one body
to another, would be possessed of a certain amount of energy,
and in spite of the continual transference and retransference

of energy between matter and aether, the amount of energy
•in the aether, and the law of its distribution between different

wave-lengths, would remain constant. In this supposed state,

let the energy per unit volume of radiation of wave-lengths
intermediate between X and \ + d\ be assumed to be

F(\, T)dX (1)

3. The position of the masses of matter inside the enclosure
lias been immaterial. Let them now be supposed spread over
the walls, so that every part of the original perfectly-reflecting

walls is covered. So far the whole system inside the re-

flecting walls has remained impervious to energy. Let a

minute hole now be made at any point in one of the walls,

and let the radiant energy stream through this hole into

external space (which may, for simplicity, be thought of as

devoid of radiant energy). At first the issuing stream of

radiant energy will be of constitution given by formula (1);

but in time, as the total amount of energy inside the enclosure

diminishes, the constitution of the escaping energy will

change. The flow of energy could be kept constant, provided
energy of the appropriate amount and constitution could

be supplied to the inside of the enclosure. There would
then be a steady flow of energy through the aperture, of

constitution given by formula (1).

4. Suppose that the walls are no longer perfectly-reflecting,

but are provided with a mechanism which keeps them at a

uniform temperature T. The flow of energy through the

small aperture must now be "steady": experiment shows it

to be independent of the nature and reflecting power of the

* This is the orthodox view. Equalization is commonly supposed
to be a necessity, from the second law of thermodynamics. My own view
is that equalization would take place, but only because the charges
on the electric sources of radiation would be identical in the different

masses of matter. If the electrons in one mass were more heavily
charged than those in the other masses, I believe the temperatures
would tend to become different, in opposition to the second law.

( Cf. Phil. Mag. [6] xii. p. 57.)
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walls. Let the constitution of this stream of energy be

supposed given by the formula

f(\ T)dk (2)

It is commonly argued or assumed* that the constitution

of the energy in this experiment must be the same as in the

preceding imaginary experiment. If so, the functions F and

/ must be identical.

5. Assuming the legitimacy of using the theorem of Equi-

partition of Energy, the function F can be calculated at once

from this theorem. It is found | that

F(\, T)= 8ttRT\-S (3)

where R is the universal gas-constant.

The function /can be determined experimentally. Planck J,

with the help of a mathematical argument, with the details

of which we are not here concerned, arrives at the formula

/(X, T) =^-^—, .... (4)

a form which agrees well § with experimental readings, pro-

vided c and k may be treated as adjustable constants.

The values of c and k which Planck arrives at by comparing
formula (4) with experiment are

c=l-965 x 10- 16
, £=1-346 x 10~ 16

.

On the other hand, Lorentz
||, using the form 87r&V~4T, to

which formula (4) reduces for long wave-lengths, obtains

£= 1-07 xlO-16

as the value of k given by experiments on light of great

wave-length. According to Planck's analysis, the constant k

ought to be identical with the gas constant R, of which the

value is known to be R=10-16
to within a few per cent.

* The assumption is tacitly involved in the common employment of the

expression " radiation appropriate to a given temperature."
( Cf. Proc.

Koy. Soc. A. lxxvi. p. 306, 1905.)
t Rayleigh, Phil. Mag. [5] xlix. p. 539 (1900), and Nature, lxxii.

pp.' 54, 243 (1905). Also J. H. Jeans, Phil. Mag. [6] x. p. 91 (1905).
_

X Vorlesungen iiber Wdrmestrahlungen (1906), p. 157, and in earlier

papers.

§ Planck, Vorlesungen iiber Wdrmestrahlungen, p. 158, and Paschen,
Annalen d. Physik, iv. p. 277.

||
Konink. Akad. van Wetenschappen (Amsterdam), April 24, 1903,

p. 678.

R2



232 Prof. J. H. Jeans on Temperature-Radiation

Let us, for the present, continue to denote R and k by
separate symbols, leaving open the question of whether or

not the quantities they represent are identical. If these

quantities are not identical, then the formulae (3) and (4) are

entirely different. But if they are found to be identical, then

the formulae will be seen to coincide for light of great wave-
length, but to diverge widely for light of visible or very short

wave-length.

6. The divergence between the two formulae, whether
complete or partial, raises various questions, to which the

analysis of the present paper attempts to provide answers.

It is natural to inquire

—

(1) Is the uce of the Theorem of Equipartition, and con-

sequent derivation of formula (3), legitimate?

(2) If so, what is the essential difference between the

physical conditions which lead to formula (3) and those

which lead to formula (4) ?

(3) If equation (1) is answered in the affirmative, do
formulae (3) and (4) become identical for long wave-lengths

;

and if so, why ?

It may simplify what follows to state briefly in advance

the conclusions arrived at.

7. It is found that question (1) can be definitely answered
in the affirmative, but that the theorem of equipartition

represents merely the tendency for energy to become de-

graded into irregular disturbances of the medium, and the

utility of the theorem of equipartition (although not, of

course, its truth) is limited by the circumstance that it

represents a state attained only after enormous, or infinite,

time.

The answer obtained to question (2) can be best explained

by making use of an acoustical analogy. Let the aether be

replaced by air : let waves of light in the aether be repre-

sented by waves of sound in air. Matter may be represented

by a series of musical or noise-producing instruments : these

will of course be capable of absorbing as well as emitting

sound.

To represent the state of things considered in § 4, we
have to imagine the walls of a room to be covered conti-

nuously with sound-instruments (to make the picture clearer,

let us say telephone diaphragms), and we suppose that these are

kept in vibration by agencies acting from outside the room.

A person listening at an aperture in the Avail of the room will

hear the sound of the telephones (modified by the reflexion

and absorption of the other diaphragms, perhaps): the
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energy of these sounds corresponds to that given in

formula (I).

To represent the state of things imagined in § 3, suppose

that the walls behind the diaphragms are impervious to sound
and to all kinds of energy, and that the aperture in the wall

is stopped up with matter also impervious to energy. The
diaphragms must be supposed to be initially set into vibration,

and then left to themselves. The energy of the sounds they
emit will be reflected, absorbed, re-emitted, and so on.

Finally all sound will have become dissipated into heat. The
energy of the original sounds—the total store of energy in

the room—will figure as the heat of the air and of the

diaphragms. A person outside the room who uncovers the

aperture and listens will hear nothing at all, unless his ears

are sufficiently acute to hear the waATes of air originating

in the random heat-motions of the molecules. For, as we
shall see, this random motion of the molecules can be re-

solved, by Fourier's theorem, into the motion of trains of

waves, and, in perfectly irregular heat motion, there is equi-

partition of energy between the different trains of* waves, so

that the law of partition according to wave-lengths is given

by the formula ^irRTX-^dX. This agrees with formula (3),

except for a numerical factor 2 ^which finds its origin in

the different energy-capacities of transverse and longitudinal

vibrations.

It is found that the third question must be answered in the

affirmative. The reason for this answer will be found in

the concluding sections (§§ 22-30), and the reader who is

not interested in the abstract argument and analysis which
follow is advised to pass at once to these sections.

The "Normal State''' and Equipartition of Energy.

8. TVe begin the mathematical discussion by proving the

law of equipartition in the form appropriate to the vibrational

energy of continuous media. It is important to exhibit the

proof in such a form as to make it clear that the law rests on

no assumptions of any land, excepjt the assumption that the

motion of the medium obeys the laics of a conservative dynamical
system.

Let L be a function of variables 0^ 2l . . . a , X , 2 , • • • #
?l ,

and let these change in value so that -^ =#i, &c, while

\ Ldt is stationary in value. Let L consist solely of terms of

degrees two and zero in l9 2, . . . dn .
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New functions ul9 v2 ,
. . . un and 1/ of these variables are

introduced, defined by

Ui= — , &c.

1/= u l61+ i/2 2 + -f yn0n— L

;

and it is then proved in the usual way, by purely algebraic

transformation*, that

(*>
du± _ _BL'. </01 = dL'.

(ft B^i ' eft (^j '
' '

whence it follows that

'du1 \dt)^-d0i\dt)
W

The condition that (hdt is to be stationary determines

uniquely the changes in 0±, 62 , . . . n , 1? 2 , . . . #„, starting

from given initial values. Kow let a generalized space be

constructed, having
1? 62 , . . . 6n , u 1} u 2 . . . z/ ?! , as its coor-

dinates. Let this space be filled with " representative points
"

each of which is to move as directed by the condition that

\ Jjdt is to be stationary. If p denote the density of these
u representative points " at any point in the generalized space,

and if jJ~ denotes the rate of increase of p as we follow the

" representative points " in their motion, we have f, as a

matter of algebraic calculation,

by equation (6). If the "representative points" tended, in

their motion, to concentrate onto any special points or regions

in the generalized space, then ^ would be positive for those

points or regions : similarly, if the " representative points
"

tended to scatter, ^~ would be negative. The result obtained

in equation (7). that jJl vanishes everywhere, shows that

there is no tendency for the u representative points " to

* R,onth, 'Elem. Rigid Dynamics/ chap, viii., or Jeans. ' Theoretical
Mechanics,' chap. xii.

f Jeans, ' Dynamical Theory of Gases/ p. 63.
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concentrate about any special points or regions in the

generalized space, or the reverse.

TVe have so far merely studied the changes in the values

of a system of algebraic variables, when they change as

directed by a certain algebraic system of conditions (namely,

S\ hdt= 0). The motion of points in the generalized space

has merely provided a graphical representation of these

changes.

9. Now let these variables U #2 , . . . 6n , 1? #2 , . . . n be the

coordinates and velocities of a dynamical system, and let L
be its Lagrangian function. Then the motion of a " repre-

sentative point " in the generalized space will represent the

changes in the coordinates and velocities as these change in

accordance with the principle of Least Action

—

i. e., as the

system moves in accordance with the laws of nature. The
proved fact that in this motion there is no tendency for the
" representative points " to concentrate about any special

points or regions of the generalized space leads at once to the

following :

—

Theorem. All properties (if any) which are such as to be

finally acquired by the dynamical system, independently of the

special state from ichich the system started, must be properties.

common to the ichole of the generalized space.

For, if the system must inevitably possess some property,

this can only be either because its representative point tends

inevitably to pass into the regions of the generalized space in

which this property holds, or else because the property holds

in all regions. The former alternative is disproved by
equation (7) : the latter alternative must accordingly be the

true one.

10. It is found that, in general, there are no properties

common to all regions iti the generalized space (or rather, no
properties of any importance for the present purpose). But
when the system possesses an infinite (or very great) number
of similar coordinates, there are certain statistical properties

found to be common to the whole of the space except for

infinitesimal regions of it. A system which possesses these

statistical properties is said to be in the " Normal State."

A representative point may of course have its whole path
in regions in which the ;

* Normal State " does not obtain, or

it may pass through these regions for periods, large or small,

on its path. But we have the quite general theorem:

—

Theorem. If a system tends to acquire definite properties,

independently of its initial configuration, or if it tends to acquire
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these properties when it starts from any configurations except

an infinitesimal few, then these properties must be properties of
the "Normal State"

For, if not, suppose that the system tends to assume some
property P which is not common to the whole of the gene-
ralized space, or even to the whole except for infinitesimal

regions, but is confined to some region S of the generalized

space. The "representative points" which at the beginning
of the motion in the generalized space occupied the whole of

this space (or the whole of it except for infinitesimal regions),

must, by the end of the motion, all lie within the region S

—

a result which would be in opposition to equation (7),

Bt
~ U -

11. Of the properties of the " normal state/' that one
which is of primary importance for the present investigation

is the Equipartition of Energy *.

Suppose that the energy E of the system can be expressed

as a function of the Lagrangian coordinates and velocities in

the form

2E = a,p;- + a#* + . . . + anpj +/(01? 2, . . . ft,),

where pt, p2, . . . p„ are any quantities (coordinates, velocities,

or momenta) and ly 2 ,
. . . 6n are other quantities which may

or may not enter into al5 u.2 , . . . aa. The law of equipartition

states that if n is very great, the energy represented by any
very great number 5 of the n first terms is, in the normal slate,

proportional to s. We assume it to be ^sRT. Then, if part

of the dynamical system consists of matter of any kind, T is

the temperature of this matter f.

12. If the system is supposed, for the moment, to consist

solely of a non-dissipative vibrating medium, free from dis-

turbance by external agencies, the whole of the energy can

be expressed in the form

2E =a1p1
2+ OL2Pi + . . . + OnPn,

in which p^ p*, ... p n represent the normal coordinates and
their rates of change. Thus each separate free vibration

contributes two terms to the energy. In the normal state,

the energy of any great number s of free vibrations must
besHT.

13. From a consideration of physical dimensions, it is clear

that in any medium whatever, the number of free vibrations

* The proof that this is a property of the Normal State is purely

algebraic in its nature : see ' The Dynamical Theory of Gases/ p. 67.

t Jeans, 'Dynamical Theory of Gases/ §§ 77, 124.
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of wave-lengths intermediate between X and X+ dX (where X
is large compared with the scale of structure of the medium,
if the medium is coarse-grained) must be

CX~*dX (8)

per unit volume, where C is a numerical quantity which
depends on the structure of the medium. It follows that

when the medium is in equilibrium with matter at tempe-

rature T, its vibrational energy of wave-lengths intermediate

between X and X+ dX must be

CRT\-*d\ (9)

per unit volume.
If the medium is aether, it is easily found (§ 5) that the

value of C must be S-zr, and formula (3) follows at once. It'

the medium is gaseous (so that all vibrations are longitudinal)

the value of C is £nr
s
while for an elastic solid medium

C= 12tt.

14. If the medium is structureless, then formula (9) holds

down to the very shortest wave-lengths. The energy corre-

sponding to any finite value of T is infinite. Whatever the

value of T, the whole energy (except for an infinitesimal

fraction) is confined to vibrations of infinitesimal wave-length.

In this case the value of the Law of Equipartition is not so

much that it gives the final state of the medium (a state

reached only after infinite time (cf. § 24, below)), as that it

shows the tendency for the energy to run into vibrations of

infinitesimal wave-length. Or, what is the same thing, it

shows the tendency for regular trains of waves to become
dissipated into irregular disturbances (subject to a certain

limitation, cf. below).

15. If the medium is coarse-grained, then formula (9) is

not applicable, vdien dealing with waves of length com-
parable with the scale of structure of the medium. Let
X denote (loosely speaking) the smallest wave-length pos-

sible, so that A is a length comparable with the scale of

coarse-grainedness of the medium. From formula (9), the
total energy per unit volume of the medium is

j:IA.=A O/V

If J is the mechanical equivalent of heat, the " specific

heat " of the medium must be

CR
3JA 3

per unit volume. Denoting this specific heat by c, and
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replacing R/J by its known value 2 x 10" 24
, we find that X

must be of the order of 1*3 X 10" 8 X tr~K For instance, for
water a= l : it follows that the mean distance apart of the
molecules of water must be comparable with 1*3 X 10 -8 cm.
For air at atmospheric pressure, <7=*0002 : it follows that
the mean distance apart of the molecules of the atmosphere
must be comparable with 2x 10 -7 cm. If it were possible
to measure the energy of cether in temperature-equilibrium
with matter, we could determine the specific heat <r, and so
obtain a knowledge of the scale of structure of the aether
(if any).

Examples and Discussion of the "Rormal State " in

continuous media.

16. Before passing to further developments of the theory,
I have thought it permissible to illustrate the foregoing ideas
and concepts by a few mechanical illustrations.

I. A Stretched String.

17. Consider a dynamical system of which the kinetic and
potential energies are respectively given by

2T=m(w
1
2 +^ + ... + z

)?), (10)

2Y== /,{( tr -^ 2 +(^-^) 2 + ... + (^--^+i)
2
}, • (11)

and let n be very great.

If A' , #l5 x2 , • • • ®n, xn+i are coordinates of particles con-

strained to remain always in the same straight line, the

system may be supposed to consist of a series of n + 2

collinear particles, each attracting (or repelling) its neighbour
according to the law of the direct distance, the two end
particles being fixed in position. With a slight change in

the meaning of the symbols, the system may be supposed to

consist of heavy particles connected by elastic strings. In
the limit when n is made infinite, the system will represent

a continuous one-dimensional elastic medium, or a stretched

string capable of performing longitudinal vibrations only.

Regarding the system as a collection of particles, the pro-

perties of the '* normal state " can be seen at once from an

examination of the energy-function. The velocities x
l9

a?2j • • xn
will be distributed according to Maxwell's law

Ae- hmu2du,

and, when n is infinite, the same can be shown to be true of

the differences ccQ
— xh x x

— .r2 , &c. Thus in the normal state,



and the Partition of Energy in Continuous Media. 239

each particle has, on the average, kinetic energy ^RT, and
each element of stretched string has, on the average, potential

energy ^RT. In the normal state, these kinetic and potential

energies are distributed at random, and without correlation,

about the common mean-value 17RT.

In the present investigation, however, we are concerned

with expressing the energy of the normal state in terms of

the energy of trains of waves.

It is readily found that the free vibrations, subject to

tr =0, #B+i=0j are given by

**=sin^(?=l,2,...»), . . . (12)

and the frequency of this vibration (p) is given by

p=%
s
/l sin_^_ (13)V m 2(n + l) y J

I£ £i> ?2> • • • f« are the various principal coordinates, we
may, from equation (12), write

-&-S C")

Expressed in terms of the principal coordinates, equations

(10) and (11) become

We can now express the energy of the " normal state " in

terms of the energies of free vibrations, or of trains of waves.

Since each term in T and V has an average amount of energy
^RT, it follows that each free vibration has average energy RT.
From equation (12) it follows that the wave-length X of the

2
qth. free vibration is — X (length of system). Hence the

number of free vibrations for which X lies between X and
X+ dX is 2X~ 2dX per unit length of the system. The energy
per unit length, of wave-length intermediate between X and
X + d\, is accordingly

2UTX- 2dX (15)

This is the one-dimensional analogue of formula (9). It

represents the energy of the random distribution of kinetic
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and potential energies which we have already seen to obtain

in the normal state, analysed into the energy o£ regular trains

of waves.

We return to the discussion of this system in § 23.

II. A Tube of Air.

18. The next system to be considered will consist of the air

inside a tube of uniform cross-section, closed at both ends.

For simplicity, the molecules of air will be supposed to be
similar and infinitely small spheres : let them be N in

number.
The normal state of this system is one with which the

Kinetic Theory of Gases has made us very familiar. As
regards position, the molecules are distributed absolutely at

random throughout the tube : as regards motion, each velocity-

component is distributed according to Maxwell's law.

Let us consider the arrangement of positions first. Let
us imagine the tube divided into a great number n of cells,

each being of the same cross-section as the tube, and of

volume a).

An "arrangement by which the molecules are placed at

exactly equal distances apart, in some regular geometrical

order, is of course a possible arrangement, but is no more
typical of the normal state than would be a motion in which
each molecule had exactly the same velocity. So also an
arrangement in which each of the n cells into which the tube

is divided contained exactly the same number N/n of mole-

cules, is possible, but is not typica] of the normal state. In the

normal state, the numbers of molecules in the different cells

will be distributed around the mean value N/n, according to

a law which can be determined.

Consider a single arrangement in which the numbers of

molecules in the n cells taken in order are al5 a2 , . . . an . In
the limit, when n is made infinite, a knowledge of the values

of au a2 , ... an will be equivalent to a knowledge of the density

of the gas at every point of the tube. On expressing this,

by Fourier's theorem, as a series of circular functions, we
can represent the deviations from uniform density as due to

the superposition of trains of waves.

Employing the conception of probability in the exact sense

in which I have defined it elsewhere *, the probability that an

* Phil. Mag. [6] v. p. 597, or ' Dynamical Theory of Gases/ p. 53.
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arrangement selected at random shall have ah a2 , ... an as the

numbers of molecules in the successive n cells, is
*

N ! n-*

ax \ a2 I

Hence the probabilitv that ^, ^§ . . . shall lie within limits

<§MS)
'

Let us now transform variables from a1? a2 . . . a n to

fi? ?s> • • • £» where fl5 f2 , . . . f„ are given by the equations

^ = ^+g

5> sin^&c. = 1, 2,... 70. . (17)
co nco q=\

jq

In the limit, when n is made infinite, this equation becomes

. . x
' Sill -r

q—n y.

where vis the molecular-density at a distance x along the tube

(supposed of the iotal length I), and v is the average value of

v (cf. equation (14)). Thus f1? £2 , . . . %n ultimately become
proportional to the amplitudes of waves of wave-lengths

Let expression (16), transformed to variables f1? £2 , • • • ?nj

be supposed to become

/(fi, ?2, • • • ?*) d^ d%2,
.

. . dgn ;

so that this expression will measure the probability that

fi? ?2? • • • ?» shall lie within limits dfi, ^£2 , . . . df». From
equation (17.) we have

~d ias \ co . it

o
yw w • • •

J

so that

\ AP AT' * * *
J

3 (&,£*..-)

where A is the determinant whose (5, q) term is sin {sqir/n),

a pure number and a constant.

* ( Dynamical Theory of Gases/ p. 89.
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Thus we have

/ (fi, ft, • • • &)=-m TT \N
'
N

' /

d(£, fj, ...)

N ! »i~N to'
1 A

a x \ a2 \ ... an !

*

Using Sterling's approximation for the values of N !, a x !,&c.

this gives

log/(f„ & ... f»)=C- T(a.+t) log-S. . (18)

where C denotes the constant

72 ?2 ~~ 1
-log n — log (27rN) -4- a log co + log A.

Write equation (17) in the form

a*= «o+ Ss, (19)
where

aQ
= —

, b = ft> 1 & sin -

—

!
,w

?=i n

then, since Ss maybe supposed small compared with <? ,we have

S

<0
(^i)logf= (a„+i+ Ss)log(l+

|)
2q — l

g 2

4« 2 s
'

iis far as terms of order (S s/<2 )
2
» On summing, we obtain

s=n oin 9/7 1 s=n

_ 2a — 1 nft)
2

- 4a 2 2 tft ^ & + "" &J -

Eeplacing - °—
3

by ^— in this, equation (18) becomes

iog/(ft, &, •• f.)=o-*«is+&!+ ... ft.
2
),

vhere "= s; = ^'
and so we obtain as the law o£ distribution

/ (fi, f, . . • £0** • •*= Ae ~<Sf+V+ ?"
2

) rff1 <% • • • dl,

.... (20)
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where A is a constant. It follows at once that fi
2
, f2V-.

eacli have the same mean value, given by

The next step is to find the potential energy of the trains

of waves ft,&, ••• ?» If /> * s tne equilibrium pressure, and

cr the condensation at any point, the potential energy V is

given by
Y=tp$o*dxdgds,

where Y is measured from the equilibrium configuration, and

all heat-energy is treated as kinetic. The condensation in

in the sth cell," say as, is, by equation (19),

as— Oq S.s &) %n
f.

. 0S7T
a— — = — = — 2, £q

sm — .

a a
Q Oo ?= i n

so that

Y= i p S ov ft)

HK<&,+6,+ ~6-,
)>

or, since ^>= Rv T,

V=£RT^(f1
2+&*+...£,3

)-

Hence, by equation (21) }
each term in Y has average

energy ^RT*
19." We next consider the partition of kinetic energy.

Suppose that of the N molecules, a number N' have

^-components of velocity which are intermediate between

u and u + du. In the " normal state " there is no corrella-

tion between velocity and positional coordinates, so that the

N' molecules will be distributed between the n cells accord-

mo- to the same laws as the N molecules in the analysis just

completed (§ 18).

Of these S / molecules, let the numbers in the different

cells be hi, 63,... h, and let <nu <n2, ...Tj n be given (cf. equa-

tions (17)), by

- =— + 2 17, sin -t—
( 5 =1, 2, ...n), . (22)

ft) nto q= i n

then the r/s will be distributed according to the law

(cf. equation (20)),

A;

g-'W+i2
2+ - ^2

) <f% <fy2 . . . dVn, . . (23)

where «,=H2/4N/
.
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That part of the <i*-momenturn in the 5th cell which arises

from the motion of molecules with .r-velocities between xi

and u + du, is

N' 9~n a sir
bs mu= mu f- 2 mu co rjq sin -

—

n q=l n

The total momentum in the sth cell, obtained by summa-
tion, is accordingly

M,= S hmu = 2 C sin^- , . . . (24)

where
U=+00

Ji= 2 muco7]
q (25)

11 — —CO

Equation (24) analyses the total ^-momentum into the

momenta of trains of waves. The total kinetic energy of

these waves is

iT^ = ,4-(?r+c+-C). • • (26)

To find the law of distribution of the f's we return to

equation (23). The law of distribution of muarji, mua)7]2 , ...

may from this equation be expressed in the form

where k'^PJ/^' u 2
co

2m 2
. It follows at once that the law

of distribution of the quantities £\, f2, . . . given by equation

(25) is*

A///r«"'(?L
,+;,+ .»)

1̂^ iifj . . . (27)

where
1 «=+- 1 4w2m2 *%+", - 4mNRT
-m= t D? = -fiT 2 N "2= -

?
—

.

/C U=— CO « iZ(
2<=— CO ' 6

* If !»,«!, mrOxi m l
ic\ are distributed according to tlie law

_ A {(mi»i)2+(mii;j)2+(miiPi)2j

Ce nu d{m
lu1)d(m1

v
1
)d{m1w1)t

and w 2w 2; . . • according' to the law

_A i(«*2«2)2+—

T

C e "'- J d(moi(.2 ) . .
.,

then »hMi+«a«a+ ••>••• are distributed according to the law

_^{(TOi«l+»l2«2+".)2+..-} ,, . . ,

C" e M l d(mxiil+nwe+ ...)...,

where M=m +w?2
+" •"•'

• ^his resul* is obvious from physical con-

siderations; or may of course be obtained by algebraic transformation.
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Thus £1, £2 , ... are distributed according to the law of trial

and error, and the mean values of their squares are given by

The energy of the trains of waves being, as has been seen

in equation (26),

' (&« + &"+... + &»),
4N"i

it now follows that the average value of each term is -§-RT.

20. Thus we have seen that in the normal state the random
motions and positions of the molecules result iu certain

departures from uniformity, both of density and of momen-
tum. We have seen how these departures from uniformity

can be regarded as due to regular trains of waves, and have
effected their analysis into such trains of waves.

In any general motion of the medium, the kinetic and
potential energies T V are given by

2V=
/
Si^ 1

2 + y
g2 (/)2

2+ ...,

where <j>i 9 <f>2-- measure the amplitudes of different trains

of waves. We have found that in the normal state the

average value of each of the terms

i«i<£i
2

> ia2$2
2
, ••• iPifa

2
, ...

is the same, namely JRT, the value given by the theorem
of equipartition of energy. Incidentally, we have j also-

verified that the values of <f>l5 (j>2} . . . </>i, • • . are ranged round
their mean values according to the law of trial and error, as

they ought to be.

To put the matter in another way, we have found that the
law of distribution

ArteW+VKW...^^ d^^ ^^^^
is identical with, and may be transformed into, the law of
distribution

A,

e
-hm{a;tf+a^+ ... +fl l^+AWi+ -)^

i^2 ... #1 ....

The former law regards the energy as that of a system of

Phil. Mag. S. 6. Vol. 17. No. 98. Feb. 1909. S
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moving molecules: the latter regards the energy as thai

vibrating medium. Each law of distribution is that of the

normal state. From the second, ir follows at once (cf. equa-

tion (15)) that the law of partition of en- _ tween
vibrations of different wave-lengths is

2RT\-

and it is easily seen that in the three-dimensional problem,

the corresponding law is

These formula? are of course true only for waves of length

great compared with molecular distances. Ihev require

modification as we approach wave-length? comparable with

molecular distano —

.

HI. A Mecliankal Mode] of the ^Ether.

'21. There appears to be no reason why the energy of the

electromagnetic field cannot be treated similarly to ths

_ s, except for the simplification that, so far as we know,
no limitations need be introduced by the eoarsegrainedness

of the structure of the medium.
For simplicity let us consider a rectangular enclosure, and

imagine it divided into equal cubical cells, each of edge I

and volume co. Let these cells be denoted by the numbers

000, 001,0 - 10.011. ...

the cell pqr bavin _ as its nan coordina: ive to

the cell 000,

ith any cell associate three coordinates fiV,

T7wo £w? and the three corresponding velocities fp?r . 17^. _

xamine the motion of the system of which the energy
function is given by

co „^ r

...
This fur, ;:: n E is of course identical with the Hamiltonian

function L i : 5, sc that the equations of motion of the
svstern can be written down at once (ef. equations (5)).
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If we introduce new quantities a, j3, 7, X, Y, Z, associated

with each cell and given by

= Zpqr

^P?r = J { Zp,q+hr— Zp,q,r— yp,l,r+l+Vp,q, {> ' ' (30)

kc, then the energy-function becomes

E = £- XtX («»+0l+7»+X*+Y*+Z>
). • (31)

07T p q r

If we make I and co vanish in the limit, the value of E
becomes

E = i fjT («2 4-iS
3
4- t

2 +X2 +Y2 + Z2
)^% <fe,

which is identical with the electromagnetic energy in free

aether. The equations of motion obtained from equation (29)

reduce, when 7 is made to vanish, to the equations

1 rfX By
C dt ~ By

~
B/3

~B*

1 <7* BZ
C dt ~ By

"
BY

which are the electromagnetic equations in free aether.

Thus the mechanical system now under discussion becomes
identical dynamically with the electromagnetic field when
1= 0. Any dynamical property of the present system which
is independent of I must accordingly be a property of the

electromagnetic field.

The energy function (29 ) is the three-dimensional analogue
of the one-dimensional energy-function given by equations

(10) and (11). It can accordingly be expressed as the energy
of trains of waves, following the method of § 17. From
this it follows that in the " normal state

?
' the law of partition

of energy between waves of different wave-lengths must be

8irRT\-*dk, (32)

so long as \ is large in comparison with I. Hence this must
be the law of partition of energy in the "normal state" in

an electromagnetic field, at any rate for waves which are long-

in comparison with the scale of structure (if any) of the

aether.

S2
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1 lie Bate of Approach to the "Normal State"

22. The " normal state " may be thouglit of as a sort of

composite photograph of all possible states. Any features

common to all states (or to all except an infinitesimal fraction

of the whole), must be features of the normal state, and
conversely. From this it follows (§ 10) that if there are any
properties which a system tends to acquire, independently of

the particular state from which the system starts, then these

must be properties of the normal state. But it has not been
proved, and cannot be proved, that a system will, in every
case, tend to pass into the "normal state."

To take a well-known instance, the " normal state
M of a

gas inside a rectangular vessel is given by Maxwell's law,

but if the system is started in such a way that the molecules

all move on parallel paths perpendicular to one pair of laces,

the system will not pass into the normal state at all.

23. Again, the energy of a non-dissipative medium, or

conservative dynamical system capable of executing isochro-

nous vibrations, can be expressed in the form

2T = «i0i
2 + ot.

2 <l>2

2 + ...' "^

2V = &£1
2
-f/32 2H ...J'

(33)

where 1? <j>.2 , ... are the coordinates of the separate free

vibrations. In the l( normal state," we have

i"itf>r+/W = i"202
2 + &#22 = ... =RT.

But in any free motion of the system, the quantities

JWi!+AM. K-A'+ Afr"), *6-i • • (34)

retain through all time exactly those values with which they

started. There is no tendency towards equalization of the

values of these quantities, and therefore no tendency for the

system to pass into the normal state.

For instance, in the system of § 17 (a string of particles)

the motion consists of the propagation of trains of waves,

without change of type or interchange of energy. As regards

the practical problem of finding the final partition of energy,

the existence of the- " normal state " is of no account at all :

the whole problem turns on the initial state of the system.

As regards the system of §§ 18-20 (the tube of air), we
know that as a matter of fact the system does tend to assume

the ' ; normal state," which, as we have seen, is a state of

random motion of the gas-molecules. The reason why this

case differs from the last is that it is not permissible to
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express the energy in the form (33), while at the same time

treating the system as non-dissipative. If the energy is

expressed in the form (33), the quantities (34) do not remain

constant, for the energy they represent is subject to dissipa-

tion by viscosity. If we wish to treat the system as non-
dissipative, we must regard it as an aggregation of molecules,

and the energy can no longer be expressed in the form (33).

24. "We come now to the electromagnetic system discussed

in § 21. There seems to be no room for doubt that formula

(32) accurately represents the partition of energy in the

normal state, but the question of whether the system tends

to pass into the normal state remains as yet unanswered.
Light reaches us from stars of which the parallax is too

small to measure. The most refined measurements have

never yet led us to suppose that its velocity depends either

on its intensity or frequency. This and all other available

evidence points to the fact that vibrations in free aether are

isochronous and free from dissipation, or at least that they

may be treated as such in the present investigation*. The
energy may accordingly be expressed in the form (33), and
the system treated as non-dissipative. It follows at once

that the quantities (34) retain their original values—if not

for ever, at least for a time incomparably greater than any
that could be realized experimentally. It follows that a

system consisting solely of free aether could never attain the

normal state.

As soon, however, as matter is introduced into the enclosure,

the problem assumes a different aspect. From the necessary

interaction between matter and aether, it follows that the

energy of the aether can no longer be expressed accurately in

the form (33). The energies of the different vibrations into

the aether no longer remain constant, for the matter supplies

a means of interchange of enero-v between them. The
question which now becomes cf preponderating importance
is that of the rate of transfer of energy.

25. It is known t that the rate at which energy is trans-

ferred to a vibration of frequency p is proportional to a

A short calculation will show how safely we may neglect dissipation.

Lisrht reaches us from Arcturus, distant 2 x 1014 miles, and we have no
reason to suppose that it is greatly dimmed on its way. However, as

we can afford to be liberal in the allowance we make for dissipation, let

us suppose that the light, by the time it reaches us, is dimmed to one-
billionth (10—12

) of its original brightness. This means that the light

has to travel 70,000 miles (a much greater distance than it could possibly

be made to travel in any terrestrial experiment) before its energy is

diminished even by one-millionth of one per cent,

t ' Dynamical Theory of Gases,' chap. ix.



250 Prof. J. H. Jeans on Temperature-Radiation

factor e~ 2Pfi, where ft is a positive quantity. If the origin

of heat-radiation is to be found in the collisions between
electrons and atoms of matter, then ft will be comparable
with the time of collision, say, 7 x 10~ 14 sec. at ordinary

temperatures. For yellow light />= 3xl0 15
, so that

e-2#3__£-42o # Thus, purely as a matter of calculation, and
apart from any special hypotheses or assumptions, we find

that the rate at which visible light would be emitted, as the

result of heat-radiation, from matter at ordinary temperatures,,

must necessarily be very slow. Thus, although the final law
of partition of radiant energy in a perfectly reflecting en-
closure containing some matter would be that of the "normal
state," given by formula (32), yet it would require centuries

to reach this final state, and the smallest departure from
perfection in the reflecting power of the walls would result

in this final state being impossible of attainment, even if

infinite time were available.

So far from it being possible to assume infinite time or

perfect reflecting power under experimental conditions, we
find that we must assume exactly the reverse when light of

short wave-length is concerned. For light of sufficiently

small wave-length, the densest matter must be as transparent

as is the atmosphere for ordinary light. Even for light of

the wave-length of Rontgen rays, the walls of the experi-

mental enclosure must be regarded as practically transparent.

Thus energy of short wave-length disappears entirely from
the enclosure within, say, 10~ 8 seconds after its emission,

while the emissions of centuries would have to accumulate
before the " normal state " could be established.

Conclusion.

26. It now appears certain that the observed partition of

energy which Planck's formula (4) attempts to represent

cannot be that of the "normal state"—at least for short

wave-lengths.

We are at once confronted with the question : Why is it

that the partition of energy given by this formula is, to all

appearance at least, that of a final state which the system
tends to assume, independently of the state from which it

started ? For the existence of such a final state, different

from the " normal state/'' would at first sight seem contrary

to the theorem of § 10.

In answering this question it is necessary to emphasize
the distinction between "free" and "forced" oscillations

The " normal state" is one in which the oscillations are free:
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the system neither gains nor loses energy, and is free from
all external disturbance for an unlimited time. In the

observed state there is both a loss and a gain of energy (the

two being of course equal in amount), and the oscillations

are " forced." Any dynamical system subject to a loss of

energy will, after a sufficient time, reach a state from which
all traces of the initial conditions have disappeared ; its state

will depend solely on the forces which act upon it from
outside. There exists a final state of this kind, to which every
system necessarily tends when acted on by definite external

agencies, and this final state may be something entirely dif-

ferent from the " normal state "
: it is such a final state that

Planck's formula represents. We may speak of this state

as the " steady state "
: it is the state reached as soon as

the influence of the initial conditions has been dissipated

away.
27. The " normal state " can depend only on the aether,

but the " steady state " will depend in addition on the

material agencies which force the vibrations in the aether.

Consequently, Planck's formula (4) contains more constants

than the formula (3) of the "normal state.'''

There is no a priori reason why there should not be
different " steady state " formulae corresponding to different

kinds of matter : the vibrations forced in the aether might
reasonably be expected to depend on the nature of the forcing

agency. In point of fact it is found that the specification of

the " steady state " involves only the temperature, and not
the nature or structure, of the matter by which the aetherial

vibrations are forced. This is easily seen to be a necessary

consequence cf Kirchhoff's law*. Once the truth of this

law is accepted it is readily seen that there can be only one
"steady state" corresponding to a given temperature, so

that this steady state must be the same for all kinds of

matter. Thus the constants which enter into the steady-state

formula must be quantities which are common to all kinds
of matter.

In Planck's formula there are two constants, c and k.

Of these k is either identical with the gas-constant R or is

* If the views of the present paper are sound, the structure commonly
called "The Thermodynamics of Radiation " requires modification, and the
usual theoretical proof of Kirchhoff's law with it. We then have to fall

hack on experimental investigation as to the truth of the law. The law
seems undoubtedly to be true, whether the usual theoretical proof of it

is valid or not.

Lorentz, on the basis of the electrical structure of matter, has verified

the truth of Kirchhoff's law for radiation of long- wave-length (Somnk*
Akad. van Wetenschappen, Amsterdam, 1903, p. 678).
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some numerical multiple of it (cf. §5 and §29. infra). The
constant c is, on inspection of the formula, found to be of

the same physical dimensions as E 2/K, where E is an electric

charge and K an inductive capacity. The only quantity of

these physical dimensions which can be constructed out of

quantities common to all matter is e
2/K G , where e is the

charge of the electron, and K is the inductive capacity of

free aether. Thus we conclude that the e of Planck's formula

must be some numerical multiplier of 6
2/K *.

2S. Although the " steady state" is the same for all kinds

of matter which actually exist, yet it depends on the quantity

e, and so would be different for substances having different

values of e, if such could exist t-

Imagine for the moment matter for which e is very small

—

matter for which we can say that e= 0. For such matter

the partition of energy in the cether in the steady state

is obtained by putting c= in Planck's formula. It is

therefore given by

/(X, T) = 8tt£T\-4
(35)

This same formula of course gives also the partition of

energy for actual matter for large values of X.

Planck's value of /(X, T) differs from this in that it falls

off in value as we come to small values of X. Let us examine
the physical significance of this.

29. Planck's formula differs from formula (35) as soon as

<?
2

.
, r rtfl . becomes appreciable

—

i. e., as soon as X is so small
L R1X

_ e
2

as to be comparable with ,, ^ r

p
• A physical interpretation

of this last expression is readily found.

The motion of two electrons, or the motion of an electron

and an atom (or molecule) can be regarded as the super-

position of two motions. There is first the motion of the

centre of gravity of the two bodies (which is unaffected by
a collision or encounter between them), and second, there is

the motion of the two bodies relative to their centre of

* It can be shown, from a consideration of physical dimensions (see

Proc. Roy. Soc. lxxvi. p. 545), that, subject to a certain assumption, the
*' steady state " formula must be of the type

/(X
'
T)=

K:x5*(iaa>) ;

Planck's formula determines the form of the function ©.

t See Phil. Mag. [6] xii. p. 57.
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gravity. The energy of the components of this last motion

in any given direction is equal (on the average) to RT.
Thus at the instant of closest approach in a collision or

encounter, an amount of kinetic energy equal to RT must
have been transformed into potential energy. If a is the

e
2

distance of closest approach, the potential energy is -**- ,so

that ^a

a= Kjr *
(36)

Defining a by this equation, we see that Planck's formula

differs from formula (35) as soon as X becomes comparable

with a, a being the average distance of closest approach in

a collision.

When we consider matter in which, in the limit, we take

e= 0, we have a= 0, and formula (35) gives the partition of

energy in the issuing radiation. This is as it should be
;

collisions in which the electrons approach indefinitely close

to one another will in this matter be of frequent occurrence,

and radiation, even of very small wave-lengths, is produced
at a rapid rate.

30. We now come to the final problem. Is formula (35),

which gives the " steady state " for large values of X, identical

with formula (3), which gives the "normal state" ? Or, in

other words, are k and R identical in § 5 ?

The work of Lorentz, already referred to (§§ 8, 27),

provides incidentally an answer to this question. Lorentz
rinds, as the result of actual calculation, that what we have
called the " steady state " formula, has for large values of X
the limiting form

8ttRT\- 4
, (37)

and so establishes the identity of Ic and R. Lorentz's

analysis, however, proceeds on certain definite assumptions,

such as that the free electrons in a metal undergo instan-

taneous encounters, and that between these encounters they
describe undisturbed free paths. It is therefore still necessary

to examine whether, in order to compensate for the inaccuracy
of these simplifying assumptions, it may not be necessary to

correct Lorentz's expression by multiplication by a certain

numerical factor*. If this is found to be necessary, then

the identity of k and R will not have been proved.

* This is the only kind of correction which is possible without
•violating the physical dimensions of the formula in question.
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31. Apart from this, the identity of k and R can, I thinkr

be established by an argument of a very general nature,

which does not depend on these special assumptions.

The continuous spectrum emitted by a solid must bft

granted to proceed from the motions of free electrons. A
calculation, based on our knowledge of the total kinetic

energy of these electrons and of the rate at which they

radiate energy, will show that their rate of radiation of

energy is very slow, when the time-scale is taken to be the

average interval between two collisions. It follows that the

kinetic energies of these electrons must be distributed in

accordance with Maxwell's law about the mean value §RT.
This theoretical result can be obtained independently of any
assumptions as to the nature of free-paths, collisions, or

forces by which the electrons are acted upon. Its truth has

recently been confirmed in a very striking manner by the

experiments of Richardson and Brown *.

It follows that the motion of the electrons can be analysed

into the motion of trains of waves by the analysis of § 19.

Each of the trains of waves, into which the motion of the

electrons can be analysed, will have kinetic energy appro-

priate to the temperature T. There will obviously be ex-

tremely rapid transfer of energy between these waves of

electrons and the aether in which they are imbedded. Thus
the sether in the interior of matter or in a cavity made in the

matter, will immediately take up its equilibrium partition of

energy appropriate to temperature T, namely, that given by
the formula

£ttRT\- 4
<7A, (38)

There is a limit to the applicability of this argument. The
analysis of the electron-motion into regular trains of waves

holds only for wave-lengths great compared with the dis-

tances apart of the nearest electrons. Thus formula (38)

will hold only for values of A, which are great compared with

a, where a is given by equation (36). This is exactly what

is given by Planck's formula, if the k of his formula is

identified with R.

Oct. 8, 1908.

* Phil. Mag. xvi. p. 353.


