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InTRODUCTION.

The relativistic line element of an external gravitational field due to
a point-mass or a spherical mass of uniform density at rest was de-
duced by Einstein” and later by Schwarzschild.® In this paper I pro-
pose to study the motion of a particle in a gravitational field defined
by this line element. It is supposed that the effect of this particle on
the surrounding field is negligibly small® The trajectory of such a
particle is known to be a geodesic line in the four dimensional manifold

1) A. Einstein, Berl. Ber. (1915) 831 ; (1914) 1061 ; (1916) 688.

2) K. Schwarzschild, Berl. Ber. (1916) 424; H. Weyl, Phys. ZS. 20 (1919) 81; Ann.
d. Phys. 59 (1919) 185. The rigorous deduction is due to Schwarzschild.

3) In this case we say that the particle is massiess.
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corresponding to that field of gravitation”. This problem was treated
by Einstein,” Schwarzschild,” Droste® and others.® The motion was
considered to occur in an ellipse with rotating perihelion in the first
approximation from the Newtonian mechanics. This circumstance con-
stituted one of the famous crucial tests of Einstein’s theory of gravitation,
that is, the secular motion of the perihelionof Mercury. Droste? and
Morton® have found that various other forms of the trajectories are also
possible, but neither of their works can be considered to be complete.

The purpose of this paper is to investigate the same problem in
full detail from a different point of view. We form Hamilton-Jacobi’s
partial differential equation of the problem and integrate it by the
method of the separation of the variables as was stated by Charlier,”
and then discuss the motion by introducing elliptic functions, and ob-
tain the analytic expansions according to the various types of possible
motion, and finally deduce the motion of the perihelion in a quite
general form without specification of the eccentricity of the orbit in the
Newtonian sense. Connections between various types of motion are also
discussed and explicit formulae for computing the position of the mov-
ing particle are obtained in detail. As a special case the trajectory for
a light ray is also obtained.

This problem is easier than Kowalewski’s theory of a top,” but
much more interesting than Poinsot’s top motion and the geodesics on
an ellipsoid.” ' '

1) Schwarzschild’s line element of the exiernal field of a mnon-rotating massive
sphere of uniform density at rest is not an approximation. Only restriction is that the
cosmological term is put to zero. Cf. de Donder, Applications de la Gravifigue Einstein-
ienne. (1930), and Haag, Le Probleme de Schwarzschild. (1931). The actual star is neither
rigorously spherical referred to the co-ordinate system at rest, nor of uniform constant
density referred to this co-ordinate system. It is in this sense that this line element
of Schwarzschild is said to be an approximation. :

2) 3) loc. cit.

4) Droste, Proc. Acad. Amsterdam. 17 (1914) 998 ; 18 (1915) 760.

5) W. de Ritter, Proc. Acad. Amsterdam, 19 (1916) 367 ; M.N. 76 (1916) 699 ; Green-
hill, Phil. Mag. 41 (1921) 143 ; Forsyth, Proc. Roy. Soc. London, 97 A (1920) 145; M.N.
82 (1921) 2; Levi-Civita, Atti Lincei. Rendiconti. 26, (1917) 381, 458, 519; 26, (1917)
307 ; 27, (1918) 3, 183; 27, (1918) 220, 240, 283, 343 ; 28, (1919) 3, 101 ; Palatini, Il Nuovo
Cimento. [vi] 14 (1917) 12; [vii] 26 (1923) 5.

6) Morton, Phil. Mag. 42 (1921) 511 ; also Whittaker, Treatise on the Analytical Dynam-
ics of Particles and Rigid FRodies. Third Edition. (1927) Chap. XV.

7) Charlier, Mechanik des Himmels. Bd. 1 (1901).

S) Kowalewski, Acta Math. 12 (1889).

9) Halphen, Traite des Fonctions Elliptiques et de leurs Applications. Tome 2 (1888).
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We start in Chap. I with a variational principle deduced from the
dynamical equivalence of geometrical problems to facilitate our procedure
of obtaining the relativistic trajectories in the four dimensional space-
time-manifold. This same principle enables us to compute the trajec-
tories for light rays as a special case. In Chap. II the Hamilton-Jacobi
partial differential equation of the problem is formed and its charac-
teristics are solved in order to compare our equations with those in the
classical treatment. The integration of this Hamilton-Jacobi equation
is undertaken in Chap. III by the method of the separation of the
variables in the way of Stackel. Then in Chap. IV the elliptic func-
tions of Weierstrass are introduced to perform the complete integration
of the problem. In Chap. V we discuss in detail the roots of the cubic,
which is fundamental in the theory of elliptic functions, in comparison
with the singularities appearing in the elliptic integrals in the solution.
Various types of the distribution of these singularities among the roots
of the cubic are counted up. The types of motion in the non-degener-
ate cases of the elliptic functions are obtained in Chap. VI with the
explicit expansions for the motion. Those for the degenerate cases are
treated in Chap. VII. The discussion of the results of Chap. VI and
Chap. VII leads us to the knowledge how the various types of motion
are correlated with each other and how they are transitioned to each
other as we vary the constants of integration continuously. This is
done in Chap. VIII. By the principle stated in Chap. I the trajectory
of a light ray is easily obtained in Chap. IX as a special case of the
motion of a particle. In Chap. X the nature of a quasi-elliptic motion
is completely discussed. The form of the orbits, especially in the case
very near to the Newtonian trajectories, is treated in full detail, with
the generalisation of the formula of Einstein for the motion of the
perihelion of the planets. The expansion is worked out in Chap. XI
by the application of the Bessel functions of several variables.

Chapter 1.

VARIATIONAL PRINCIPLE.

1. The trajectory of the motion of a massless particle in a gravi-
tational field with a line element:
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dsi— Z gaﬁdxu dg,
@ B

is, according to Einstein, a geodesic line in the four dimensional mani-
fold 2; (4=1, 2, 3, 4), determined by the variational principle :
Sf ds=0,

and its equations computed from this variational principle are

d%i+”*&}ae}d% das

ds* = Li) ds ds
For the convenience of the later development of our theory I propose
to replace this variational principle by an equivalent principle of a
varied form deduced by the method of dynamical equivalence of the
problems in geometry.

Consider a conservative holonomic dynamical system of four degrees
of freedom. Let the time be expressed by o and the kinetic energy"

=0. (@:17 27 37 4)

of this dynamical system be 7, which is analytic in 2; and Az
g

xz’s are the \F.

(¢=1, 2, 3, 4), and homogeneous and quadratic in ﬂ
(28

generalised co-ordinates. Suppose that the potential function® is zero.
Then the Lagrangean function I and the Hamiltonian function H are
both equal to 7. By the variational principle of Hamilton the motion
of this dynamical system is determined by®

8/ Tdo=0. (1)

The generalised momenta are defined by”.

0 T(xi, dwi )
do

do

1) I should like to make a remark at this point to avoid misunderstandings which
may occur in the reader’s mind. This dynamical meaning must not be confused with
that in the relativistic trajectories. This dynamical system is rather an image of our
problem of the motion of a particle in Schwarzschild’s field. The terms, kinetic energy
and potential function, are referred to that image, not to the motion of the particle in
Schwarzschild’s field. I introduce o for the convenience of the treatment. It plays the
role of an auxiliary variable to facilitate ourselves in carrying out our mode of thinking.
o is the time in this 4mage dynamical system, while s is the arc length of a geodesic.
In the usual correlation of dynamics and geometry the ratio of the differentials of these
two variables determines the energy constant of the image dynamical system. vide injra.

2) Whittaker, Analytical Dynamics. Third Edition. (1927) 248.

3) Whittaker, loc. cit. 262.
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da;_ (j=1, 2, 3,4) in T substitute their exressions in terms
a _

In place of

of p; obtained by these equations and write the resulting expression
® (21, p). As H=T=L, the variational principle (1) is equivalent to
Hamilton-Jacobi’s partial differential equation :

do 5xi

The characteristics of this equation are, by the well-known theory of a
differential equation,”

day —dp; _ daw —d i, 7, k=1,2, 8, 4
FIOC) 20 SEAC) P hr B EELERD
or, for our system (3),
do 98 dpi 90 (1 9 3 4 4)

do‘ 3]0@ ’ do- 31‘1

This is the Hamiltonian canonical system of differential equations.

2. Put
1/ds Y
=4, :
2\do ®)
with
1,238 4
ds’= Z Jopdadas (6)
a, B

where ¢.’s are analytic functions of z;; The Hamilton-Jacobi equation
becomes in this case

oW .1 " AW oW _

a 0. (7
e 2 “— 9 . o

g** is contragradient to ¢,s. Here it is assumed that the determinant

1) Goursat, Cours d’Analyse, T. 2, 592; Legons sur UIntégration des Equations aux
Dérivées Partielles du Premier Ordre. Chap. V; Legons sur le Probléme de Pfaff. Chap.
VI; Forsyth, Theory of Differential Equations. Vol. 5, 146; G. Juvet, Mécanique Analy-
tique et Théorie des Quanta. (1926); Frank u. Mises, Differential- und Integralgleichungen
der Mechanik und Physik. Bd. 1 (1925) 518.

2) In this stage ds* is an abbreviation of the right hand member of (6). It has
not the meaning of the line element square of the four dimensional Riemannian manifold-
(5) is the kinetic energy of our image dynamical system.
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formed by the matrix ga.s is not zero.” The characteristics of this equa-
tion are computed by (7) to be?

dz.’l'i,

do*
The same result will be obtained, if we start from (1), dlrectly by sub-
stituting (5) and (6) in (1).

5. Now suppose that we have a constraint:*
S:CO', (9)

where (' is a constant independent of 2; and of o. Then (1) and (8)
are formally transformed into

1,723 4

{oc /3} de. das
o B

3 do do

=0, (8)

a2 TGt o B dza dzs .
— Le OE () ; :1,2,8,4 11)
ds’ ZB { @'} ds ds i )

and (10) and (11) are formally transformed into (1) and (8). This
system is of the same form as Einstein’s system of equations for the
geodesics. If we prove that (11) is an actual consequence of (1) with
the condition (9), then we shall be sure that our variational principle
is equivalent to Einstein’s principle (10) for the geodesics (11). Thus
we shall be convinced of the legitimacy 'of our method of dynamical
equivalence of the geometrical problem of determining the geodesics in
the four dimensional Riemannian manifold with the line element (6).

4. The variational principle (1) under the restriction (9) is one of
the conditioned variation. However it is easily shown that the problem
can be treated as though there were no restriction at all and that we
have only to put afterwards s=Co by determining this constant C so that

1,224

Gos

dx,, (lx‘i: 02' <1¢))
—t de do

By the method of the Lagrangean multipliers in the calculus of
variation,” we put
F=T+227-0C%

1) The discussion will be undertaken at the end of Chap. IL

2) Those who find difficulties in deducing this equation are recommended to see:
Backlund, Arkiv for Mat. Astr. och Fys. 14 (1918).

3) This special choice of the unit of time is equivalent to taking the energy con-

1
stant of our image dynamical system equal to - 03

1) Cf, Bolza, Vorlesungen ither Variationsrechnug. (1909) Kap. X1
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=1 +20)T—=AC?,

where A is the so-called Lagrangean multiplier and is a function of o

Here
1,923, 4 l } l
Q1 — Gog e D28 . 13
‘,,Z,; Jes do do’ (13)

and the variation takes the form :
8 [Fdo=0, (14)
with an additional condition :
27— (C*=0. (15)
The Euler-Laorrange equations for this variation® are
R CREN .

A

do

(1422

0. (7/—- ’ 2, U: 4) (16)

This system admits an integral D

F- . * J=constant, 17
Z (m) do " {17
do ‘ '
or
(14+20) T+ AC*=constant. (18)

But, by (15), we get
A =constant.
Hence (16) is transformed to

or _d (  oT =0. (i=1,2,3,4) (19)
ox: do 9( day )
do

Thus, in our case in which (9) holds, the system 1s equivalent to

oL _d (2T  N_o (;=1,238 4) (19)
ox; do 8( dz;)

with an additional condition :

27— C*= ‘
(19) is Euler’s equation for the variation (1). Hence the above condi-
tioned variation is equivalent to '

1) Bolza, loe. cit.
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8 [Tds=0, 1)
in which we determine C* by the relation :
' 1,23 4
N7 dz. dzg 2
g — —=C (12
% Jag do do ’ )
after obtaining z;’s as functions of o by this unconditioned variational

principle.
5. Next we have to prove that such a choice is possible. In our
variational principle (1), the usual method is to form the Euler equa-

tions" :
or __df 9T _\_o. (i=1,2 8 4) (19)
31'5 da‘ a( CZIi )
* do
This system of equations admits an integral :”
: or dz
T— > — (—‘) =constant.
; a( da: ) do
do
By our assumption 7' is homogeneous and quadratic in ﬂ Hence
a

E_LT_ ( da; ):9/17
i=1 a<——dxi > do '

do
Hence
T'=Constant ;

or, by (5) and (10),
ll 2,34 de. das

5 2 9 4 do

o B
If we take the constant on the right hand side equal to 3 C% then it
is evident that the choice of (12) is possible.
Hence C* in (9) can be expressed by the constants of integration
of the system of differential equations (19).
6. Thus our process is as follows:
We solve the variational problem expressed by the principle :

8 [Tdo=0, ey
as though there were no restriction at all. The system of differential

equations of this problem is (8). The integral of this system introduces
eight constants of integration. Determine C* as a function of these

=constant.

1) Bolza, loc. cit.
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constants of integration so that

b 27—-3—’\4 dl’a dxg

9a8 4o do

=C"
Replace ¢ by (s with C expressed by those constants. Then the equa-
tions (8) are equivalent to Einstein’s equations for the geodesics in the
four dimensional Riemannian manifold with the line element:

1,234

ds'= D ges daudzs - 6)

@b
The numbers of the constants of integration are the same both for (8)
and for (11). As the potential function is assumed to be zero, 3 C* is
the energy constant of our image dynamical system. Hence we get the
following Lemma :

Lemma. The variational principle :

3fds:0,
1,238 4
ds?*= Z‘ Jap dae das
a, B
s equevalont to
8 [Tdo=0,
L2834 dxa dxs
T=3 Z 948 "dg  do

with an additional condition that, after determining x; as
functions of o by treating the latter variational principle as
though there were no restriction at all, we should determine a
constant C* by the relation

1,2, 3, 4 dxa de
9 do  do =05 (12)
B
as o function of the constants of integration, and then put
s=Co, (9)

 with this value of C.

Thus under this condition we obtain Einstein’s system of equa-
tions for the geodesics (11) directly from (1). (11) represents the
geodesic lines in the four dimensional Riemannian manifold with the
line element (68). Hence the dynamical system considered in the above
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is the dynamical equivalent of this geometrical problem to find the
geodesic lines in the Riemannian manifold (6). It may be said to be
an tmage (abgebildele) dynamical system of our problem of relativistic
trajectories. :

The problems of dynamics are often solved by its analogy with
geometry.” But our method of procedure goes.in the opposite, that is,
we are to solve the geometrical problem of Einstein by the process of
analytical dynamics. This may be called the method of dynamical
equivalence.

7. The process can be simplified by assuming C*=1 in (9), that is,
by putting

s=o . (9a)
The energy constant of our image dynamical system is then % The
equation (12) takes the form :
R dz, dzs

It do do (12a)

a, B

This relation determines one of the eight constants of integration of
(8). 1In fact, C* is expressed as a function of the eight constants by
(12). Hence by putting C*=1, we make the number of the independ-
ent constants of integration decrease by one. This is equivalent to
taking the unit of time o of our image dynamical system so that the
value of the energy constant is always 4. Thus we get the following
Corollary to our Lemma.

1) Darboux, Legons sur la Théorie Générale des Surfaces. T. 2 (1915) Chap. VI.-
VIII; Synge, Phil. Trans. A, 226 (1926) 31; Whittaker, Analytical Dynainics. 254, 419 ;
Poincaré, Trans. Amer. Math. Soc. 6 (1905) 237 ; Birkhoff, ibid. 18 (1917) 199.

It may be worth mentioning that Cinila, I1 Nouvo Cimento, [vii] 16 (1918) 105, has
applied Fermat's principle to the same problem. See, also, De Donder, La Gravifique
Einsteinienne. (1921); Levi-Civita, Der Absolute Differentialkalkit] (1928) Kap. VIII;
Fondamenti di Meccanica Relativistica. (1928) Cap. I. Ogura, T0hoku Math. Journ. 22 -
(1922) 14, has applied Darboux’s method to a similar problem for light rays. He used
the variational principle :

. 2 54
S| 1V -Vt ‘/ E gag dxadzg =0,
a, 3

where W is the potential function which is zero in our case and /4 is the energy con-
stant. This is nothing but the principle of the least action. Jacobi, Vorlesungen itber
Dynamik. (1866) 44; Whittaker, (oc. cit. Chap. IX. I might have been able to avoid
the introduction of the image dynamical system, if I had referred to the Hamilton-
Jacobi method in the calculus of variation. But I could not find any thorough treatise
on it. See, Kneser, Lehrbuch der Varialionsrechnung. (1925) 146.
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=~
-1

Covollary. The variational principle :
Bﬁis:O,

1,23, 4

dsi— >’ du da
§ = Jap Aila ATp ,
a, B

is equivalent to the variational prineiple :

8 [Tdo=0,
1,:”17]’ 5 dre das
2 uysv'q“ﬁ do do

with an  additional condition that, after determining xi as
Junctions of o by treating the latter varialional principle s
though there were no restriction at all, we should defermine
one of the constants of integration by
PR de. day
— G I+ do
and then put s=o.
This form is more convenient for the application, for we can dis-
pense with one of the integration constants from the outset.
8. Let us turn back to our problem of finding the relativistic
trajectories of massless particles in Schwarzschild’s field of gravitation.
We have three co-ordinates in space and one for time f. By the above
procedure these four are expressed in terms of the so-called proper time Ry
s. It does not hurt the generality of our problem to take the origin of >
s such that s=o for t=0. One of the constants of integration is thus
disposed of. If we apply the Corollary, only siw constants are left in-
dependent. Hence this suits our problem of finding the relativistic
trajectories.
When we apply the principle in the Lemma, the proof of this pro-
position about the number of integration constants ought to be set off
in another way.
If the Hamiltonian function in a system of canonical system of
differential equations does not contain the independent variable explicit-
ly, then the order of the differential equations is reduced by two
according to the theorem of Lie and Levi-Civita.” If we assume that
@ contains neither ¢ nor u, then the enunciated property can be proved.

=1,

1) Goursat, Legons sur UIntégration des Equations aur Dérivées Partielles du Pre-
mier Ordre. (1921} Chap. XI; Levi-Civita, Lezioni di Meccanica Razionale. Vol. 2.
Parte 2 (1927) Cap. X ; Whittaker, Analytical Dynamics. Third Ed. (1927) Chap. XIL
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This assumption is satisfied in our problem of Schwarzschild’s field.
The system of differential equations :

du 00 dpi 9B ;19,3 4)

ds dpi  ds ox;
which is obtained from (4) by applying our Lemma and in which one
of the integration constants is contained in ®, admits an integral :

. O+ h=0,

with a constant of integration h, as ® does not contain s. Arrange this
in the form :

A+p4:Oa P4= C(l;‘:i,
assuming that aa® %0. The Pfaffian associated with these canonical
P4

equations 1s
prday+ padas+ psdas+ padz.— Ods
= prdzy + padzs + psdas+ Pudza+ hds
:pldfm +pedxz+p3dxg+ hds—A (p;, Pz P3;y X1, T2y T3y h) df/l'4>
and the transformed equations are
@izﬂ, ‘%Ptz _%,’ (1=1,2, 8)
des  Ope ' dxs o%;
ds _oA  dh _,
Vdwy Oh dae
One of the integration constants is # and another occurs in the integra-
tion of the first equation of the last pair. Consider the first three pairs
of equations only. Then the latter constants of integration does not
come into play. Even the former constant h can be expressed by the
other six, for there exists an integral :
A+7L'=O,
for the first three pairs of equations with another constant of integ-
ration &', because in our problem A does not contain gz explicitly.
The constant A involved in A is determined by this integral as a funec-
tion of the other six constants. Hence, if we are dealing only with the
first three pairs of these equations, two of the eight constants of inte-
gration can be left out of account. Hence our proposition is proved.
9. The relativistic trajectory of a light ray is obtained by taking

ds’=0
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according to Einstein. Hence if we put

C*=0
in (9) and (12), then our principle provides us with a method of com-
puting the trajectory of a light ray as a special case of the trajectories
of massless particles. In this respect our Lemma is more convenient
than our Corollary. '

Chapter 1II.

CHARACTERISTICS.

1. Consider a point-mass of mass at rest (Ruhemass) m situated at
the origin of the co-ordinate system, or a spherical mass of mass at
rest m with its centre at the origin of the co-ordinate system and with
permanently constant uniform density at rest measured in this co-ordi-
nate system. The line element square of the static field external to such
a mass was given by Schwarzschild :

ds*= co2<1 - ﬁ) de*— 1 dr® —r’d @’ — r* sin® @d 67, (20)
r 1 _ &

”
where 7, @, 8 are the polar co-ordinates with the mass as their origin
and supposed to be at rest and measured by a scale at rest at the origin,
and ¢y is a constant equal to the velocity of light at an infinite distance
from the origin, and finally® «==2m. The co-ordinates r, 6, ¢ and ¢
can be identified with the Newtonian, and especially ¢ is called the co-
ordinate time or the universal time in contrast with the proper time s.

In order to see that our variational principle gives the same result
as the classical, we form the characteristics of the Hamilton-Jacobi equa-
tion and compare them with the classical expressions for the trajectory.

y:;“:; N
b e

1) As is well-known this number m is % times of that ordinarily used to represent

the mass, where k is Gauss’s constant modiﬁe?d by the choice of the units of the length
and of the time at rest at the origin. o« appears as one of the integration constants of
the general solution of Einstein’s equations for the gravitational-field. c=2m is obtained
by comparing with the Newtonian mechanics. Our whole discussion is based on this line
element. Hence we have nothing to do with the motion inside the stars. Neither we
have any right to speak about the motion through a resisting medium, nor we have any
appeal to the motion of a particle of so large a mass as to affect the surrounding gravi-
tational field.
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Take o as the independent variable in our image dynamical system.
By the method of the dynamical equivalence of the geometrical problem
of finding the geodesic lines exposed in the last Chapter, Hamilton-
Jacobi’s partial differential equation of our problem is,

oW, ! (fﬂf )2_i(1 - 3&)(,3_1’2 )2_ 1 (*ﬂ’)z
oo 9e.2 (1 _ﬁ) ot 2 r/\ or st sinfg \ 94
X 7

_51;?_(%’)2:0. 21)

The characteristics of this equation are

d_ 1AW d (o)
do 002(1__93) o’ do ot
r
ha 4 -
dr __ (1 oc)z?W d(z?W)_ 7 (c’)PV)z oc(ﬁW)2
= —(1=2)", {0 )= {20 ) + 2
do r/ or do \ or > 2(1 oc) \ ot 2r°\ or
SO\ (22)
1@y (@Y, |
P\ 7 sinfp\ 90 /’
dp __1ow (WY cosg (aWY;
do ” op’ do \ op rsin’p \ 99/’
@__ 1w d o),
do Psinp 90’ do \ 90 ' /

In this system of equations € is one of the so- called ignorable or
cyelic co-ordinates of Helmholz.? Further, if we take o as the independ-
ent variable, then ¢ is also an ignorable co-ordinate. Hence we put

W=—Ko+ft+90+ V(r,p), (23)
where K, f, g are constants. Then the Hamilton-Jacobi equation is
simplified to be :

2 2 2
T (R oY (o
o 2602(1_g> rsin” @ ‘ 7 /\ or "\ 0
7,
The characteristics of this equation are

Ly ’ ]

:lL:_(l__og)ﬂ’ ,_d_(a_V)_ r _ ¢ h

do r/or’ do\orl 2002(1__ﬁ)2 r* sin’ ¢ ‘
. T

1) Whittaker, loc. cit. 55.
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o /FJV)Z 1 (8V>
+
2\ oy op
dp _ 13V (aV) COSp 5
do *ap’ do T Psinfe
In order to obtain V, we put ¢=0. This is equivalent to taking
the plane of the orbit in the plane f=const., that is, to restricting our-
selves to the discussion of the trajectory in the manifold », ¢. The
solutions obtained in this way are particular solutions of multiplicity
oo* instead of oo’ of the general solutions, where we suppose that two
of the integration constants have been disposed of in the manner stated
at the end of Chap. I. Then (25) takes the form

(25)

Q‘Z—d—qz = AO,
(T .
] 2
dr _ o (dr (26)
d do - 7 o ‘deo +LA202'
- 2 2 2 3 ?
do\ _ 2c02(1—i‘i) 2 (1 LA
7 7 7/
also by (22)
dt _ f,..*f, S | (27)

where 4 is a constant. By (9. (20) (26) and (27) we get

()l 2)

vds r

24Py (29

ds

where we have determined the integration constant in (28) by comparing
it with (20) and (27), and further

/ \2 2 2
(i‘f—ﬂi) T S - ~145 @yl (30)
rdp/ T ¢ ror

C? is expressed by the other constants of integration according to
_ the principle shown in the Lemma. By taking A=0c0 in (29) Eddington”

has got the equation for a light ray. (26) and (27) are the same equa-

tions as those in the ordinary relativity mechanics. If we put C:C
Co

" 1) Eddington, The Mathematical Theory of Relativity.' (1923) 86 ; Einstein, Ann. d .
Phys. 49 (1918) 769 ; Berl. Ber. (1915) 831; de Sitter, M. N. 76 (1916) 699; Proc. Acad.
Amsterdam. 19 (1917) 367.
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(const.), then exactly the same equations as Eddington’s are obtained.

The present method fails if the determinant g formed by the matrix
gap vanishes. From (20) we get

g=—co'r* sin® .

For =0 or =, g vanishes. But by a suitable choice of the reference
plane we can get rid of this singularity. Also for r=0, ¢ vanishes.
Physically we are considering only »>0. Hence this singularity, too,
can be avoided. Thus g does not change its sign in our physical prob-
lem.” -
Ordinarily the motion of the perihelion is deduced from (29) and
(30) directly as was done by Einstein and Eddington ; or by the method
of the variation of the elements in the theory of perturbation under the
action of the perturbative force which can be obtained by replacing o
in our equations (25) and (26) by its expression in ¢ from (27)and comparing
it with the ordinary Newtonian equation in the way as was pursued by de
Sitter. Our procedure consists in applying the method® of the separa-
tion of the variables in Hamilton-Jacobi’s equation as stated by Charlier®
and in introducing elliptic functions so as to be able to discuss the
trajectories in all possible cases and without specification of the form
of the orbit and to deduce the analytical expressions for computing the
position of the particle in any of those possible types of motion.

Chapter III.

InTEGRATION OF HaMIITON-JACOBI'S EQUATION.

Let us return to our HamiltonJacobi’s partial differential equation

1) Jacobi, Vorlesungen iiber Dynamik. (1866) 47 ; Bolza, loc. cit. 231, 241 ; Hada-
mard, Journ. de Math. [v] 3 (1897) 331. I do not see the proof for higher dimensions.
But my argument lies in the fact that g<0 in the domain under our consideration. This
is due to the principle of relativity. Cf, Hilbert, Gottingen Nachrichten. (1917) 53 ; Math.
Ann. 92 (1924) 1.

2) Charlier, Mechanik des Himmels. Bd. 1 (1901).

3) Stéckel, Dissertation ; O. Staude, Acta Math. 10 (1887) 18; 11 (1888) 303 ; Pain-
levé, Legons sur I'Iniégration des E'Quations Différentielles de la Mécanique. 201; C.
Neumann, Crelle J. 54 (1859) 46 ; Weierstrass, Monatsberichte d. Berl. Akad. (1866) 97 ;
O. Staude, Math. Ann. 29 (1887) 468; Crelle J. 105 (1888) 298 ; Acta Math. 11 (1888) 303;
P. Stickel, Crelle J. 107 (1891) 319; Math. Ann. 42 (1893) 537 ; Levi-Civita, Math. Ann.
59 (1904) 883 ; Stickel, Crelle J. 128 (1905) 222 ; &e.
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(21) and proceed by the method of the Corollary of Chap. I. Put
W= — Ko+ Vit)+ Vr)+ Vilp) + Vi(6), (31)
then, (21) takes the form

2 2
— K+ I S (d_V_l) — L( | — i) (d_ZZ)
o dt 2 7 dr

2&@;T)

1 (d Vg)z 1 <0Z V4>2
S Ly L (4 3
27*\ dp 2% sin® @ \ d6 32)

Form this equation we get successively

AT
:%(%f%y_FQ Sii2 (p'<(ig?>2:%2’ k (33)

AR

TLAY 2{ e e 1 a)(dV2)2 ( ot) 2 2
iy s K+ (1= )Y (1 ) e,
- kdlt) * 27‘2+ * 2< /N dry } oo 2o

where hi, hs, hs are constants. Then?

m:(;o h3dt:00h3t,

1 2 2 \
Vi= 2_hhh gl g,
1-= o E%I”g) (
r ) r \34)

Vi= [ Voo 4
' ' sin%p »
P

m:—fmwz—ma

P
‘Take a system of canonical constants B, 81, Bz, B, conjugate to K, h,
s, hs. The required solution is, by the general rule of Jacobi’s method,

W_g =W

. oK Y SEF R 5
ow oW . °
=0 = (1=1,2, 3
ohe ISt Yi o 3\ )

with an additional condition :

1) The minus sign before h, is taken in order to conform with the usual definition
of the inclination I in (44).
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+ \2 2
1—c (& aty 1 dr. e Q —r%in? 48 , (36)
r INdo do do Nio
A R |

r

by our Corollary. Substituting (31) (34) in (35) we have
—By=

VPU)

f hodr f ‘h‘ dp,
Zv_l'»(')" V@((P)

— f _hedp
: sinfp yP(p)

fe [ wir va,
w—oav)VR(r)

(37)

—_/

where
20K h, _*_ochl

T2 3 7

A T 7

R(r)=(h—-2K)+~—

F (38
B (38)
sin®p

in’p

@((p) py h12'—-
Let

ol
U—=—
Vi

then
Tndr o’du
YyE(r) wyU) '
with L o)
Ulu)= o —2K) + 21{?2 u—v* o’
I hy’
Then (87) takes the form
hndo :_dL_ .
o wWUw)’ '
mdp _ du
@) VU@
dog—_ N dP | 5 (40)
sinp yOup)
odtfoch* du ' ‘
hi (L—und? VUUL) )
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(86) becomes

2
Lo gureo, (41)

—U U

N 2 2
do*=ci1—u)d+ = dp*+ % sin’pd¢*+
u Uu
Substituting (39) (40) in this equation we have
- 1
K——. 42
5 (42)
This determines K so that (12) is satisfied. Thus ¢ is defined by

d0'2: C[)2<1 —--’g‘)
P

According to the principle of Chap. I, we can write s instead of o by

dr* —r*de® —+® sin’® pd 6. (43)
1-2 :
r

putting K :»%. The constant of integration A, is superfluous for deter-

mining the relativistic trajectories of a particle in a gravitational field,
as it does not hurt the generality of the result to fix at the outset such
that s should be zero with ¢. Thus

2
Un)=u'—u*+ % +~—<hiil)

I It (89)

In this connection it is interesting to see the equation for the path
of a light ray. I‘or a light ray we ought to have ds=0. This will be
* fulfilled only if K=0. But this circumstance can not be realised in our
problem. Hence the path of the moving particle in a relativistic gravi-
tational field of Schwarzschild can nowhere at ordinary points coincide
with that of a light ray.
Now introduce I through

cos [—= %3, or gin = 1/711 Mh‘ (44)

1 h1

where I denotes the inclinafion of the orbital plane to the plane of re-
ference. And also denote the argument of latitude by . - From the
spherical triangle T formed by the orbital plane, the reference plane and
the meridian, we have the relation :

cos @=sin [ sin ¥, (45)
where @ stands for the co-latitude. Hence
_de _«ﬂ. (46)
Vo) :
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Hence the second equation of (40) takes the form :

du '
. =d. 47
YU(w) ‘
The third equation of (40) is transformed, by using (45) and (46), into
Idv cosT dvr dir
J0— cosId ___cos _ ( "
cos’p ¥ 1 —sin*Isin*yr 2 N —sin/siny 1+4sin /sin \lf)

[ (tan—;ﬁ+sin1> (tang—sinl')j]
=d| tan?*\ ————— tan”'{ ——2
an cos [ Han ~ cos T

=d.tan""tan . cos I),
that is,

tan (64 Bz) =tan ¥ cos 1. (48)

This is one of the fundamental formulae of the spherical rectangular
triangle Z. * 0+ B, denotes the longitude. Thus it is seen that our orbit-
al plane lies on the same fixed plane in the whole duration of the
motion. Hence we are led to the following system of equations:

h1 d'l/,
Mgg— ¥
o’ ’ Wy U(w)
du
0= —d, r (49
YU (w) v (49)
0— d’l;, _ h;Cn dt,
A—ww'yU(w) ks
with
2 2, 2
Ulw)=vu’—uv'+ ﬁzu + Q‘—UM—;—Q . (392)
h M
Capter 1V.

IxTrODUCTION OF Erripric FuNCTIONS.

We introduce the elliptic functions of Weierstrass to solve (49),
which is nothing but a simple case of the inversion of algebraic integrals.
Denote by wi, uz, us the three roots of the equation U(y)=0.
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2

UrF us+us=1 y  UsUs Uy + Urtha= T
1

(50)
gy — — =1L
hlz
Put — |
B:"_é" “:“‘“%’ (i=1,2,3) | (51)

then the second equation of (49) takes the form: -

e o)
Introduce the P-function of Weierstrass:with the half double periods
and o', where Po=c¢;, P(w+ o' )=¢;, Po’'=es and e;+e:+e3=0. Then (52)
is integrated with the constants of integration in (37), in which K is
determined by (42) and B, is superfluous, and we get

x:@(‘LJQ:é’x), (53)
and -
_ o +Bl _1_ \
u~'r'_@( 2 )+3' 64
The first and the third equations of (40) become -
= v +C/Z3¢ AR - 69
ol 1 \ ;
K"( g % (x-l——g—) Yz —e1)(z—ea)(x—es)
hogo ¥ f
062}1/3 __2_ ’\P-{-Bl \P’+81 _]_.~ *
) 5
= S . (56)
<7{~x/\(m+é>le—el)(x—ez)(x—es)

Now, if we differentiate an well-known formula of the elliptic
functions :?
Py
Eo+y)—Clx—y) —20y=——_, (57)
S%-—@y
then we get

Plo+5)+ Plo—y) 2@y:(@f%%ﬁ+ _@f'_'?{py . (58)

1) Halphen, Traité des Fonctions Elliptiques et de lewrs Applications. Vol. 1 (1886)
205.
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The integration of (55) and (56) can be performed by using these two
formulae.”
At first put

Then the invariants of the elliptic functions g¢s, g5 can be written

2
921—4(6162+ (’2€3+ 6{61):4(1 E_>’

3 A’

2 2 o’hs’
— ey :4(_~ 2o ohs ),
Jar=Roroata=2 7+ 3t
A=g'—2Tgs,
and further we have
. 2 2
@'Zy:4<89y—el><@y~02>(@y—ea>:£‘f%~—}‘”, (60)
2
P11y 69 —%gzz%a : ©1)
By (57), (563) and
C%g—é’:v: —Pa, ol%* log ox={x,
we get
" @%@)—f—§(x+y)—é’(9c—y)—2x@y
Py, olz+y) |
_ Jilog T T I 9 . 62
+E@'y 1log oy Eyj (62)

Hence (55) can be integrated in the form :
r~

(¥4

CYllog—— 2 (p4-B)Lyf | (63)
)

1) Evidently the integrated forms of (55) and (56) are elliptic integrals of the third
kird. They can be transformed to the sums of elliptic integrals of the third kind and
of the second kind in Legendre’s normal form. The appearance of the elliptic integrals
of the third kind necessitates the forthcoming of logarithmic functions. .
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To integrate (56) we resolve the right hand member into partial
fractions and put

@z:%, (64)
so that
pra, dohs’
]lrlz ’

and then integrate. Thus we get

: J o(\P;BI—}-z)]
3
¢ + —~log—— 2% —— —
=, "" s G(WBI_ZM
2 ‘
(V+ 8
J(H—ﬁ’)? logakp‘z‘ 1+?/)I (1 goy)
aJp S A 1—2J
l 1 y o(‘lf—i-f@l__y)J @IZy
2
£y
{("”“ +y)+§(‘;’f[’) —y)+¥+8)0y}. (6
Now
2/7 2 2
f@y:_i, (@ryp=detis =1 gn, 20"
3 hl h1 (66)
P2 (pop= dohs
. 3 y?
and by the formulae :"
f@fw:wiﬁ—(f—)z 1 —2<£>2;v_@g2'1' cos VW \
w 20 QW - \’;‘{Tﬂl—q‘” ®
2w
2 o oz7rw
_nw tzw
=" o
o 1—cos™™¥ 5 (67)
20 . Tw i ®
log ow—="" +1 0'(_ nw ! ,
. log ow- 2 + 0 — in 2w)+2n:11~q2" "
1 . 9 had 920
— L9 ‘ ,
T G
T | )

1) Halphen, Traité des Fonctwns Ellzptzques et de leurs Applications. Vol 1. pp
426, 428, 404.
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(564", (63) and (65) can be expanded in the following form :

@8 = {0y Uy )iy

sin = (Y +By)

u 20 Py 2
———— + Sg! B
® cosTY_ cos (\]f +5) ¥ &n™ (Y—t—l - 3/)
® zo\ 2

o ( gt)"ySin My > 4q2n
—~cos oy J P in 2" ). (68
+Z cos 2y oy . SIHQ%L(‘P—I-& (68)

=1 @ ® 7 1—gq
ha S L Y (P A VR O P /A TP
oc2h3<cot A= { 9z (Cz ® ) P’y( | @y )(é’y w )
1 {7
+@rzy( +@y>} (v +81)
sin — (Y 4+ B1) sin ZL(VH_B‘—I—.Z
+ g,)rzw ———Io 20\ 2
w ! o
Y cos ™Y _cos (44 By) sin T (¥EE_,
® ) 2w\ 2
™ '\b‘ + 3
4 ( _¥y) Sm_m( 2 +)
TN L, W(‘l’—*—b’x )
w\ 2
oo sin 272 sin 7Y
(6] 1 @’y @
_ (1Y
+ ; K')IZ n * f@'y ( @’2y) n

T na + 49 in
T costt +B1), 69
+S"”2?/.w o ® y,ll“g ” Zo’wf o )

y—L_ _1+(27T\ 2
“ 1 coser—’\lf-l-Bl)

—o(T): > ”‘7 o cos T+ ). (70)

nl

From these values of s, w and ¢, we get
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=
U
tan (84 &) =tan ¥ cos I, 5

cos @=sin [ sin ¥,

(71)

and ¢. These constitute the required solution of our problem. The
following Chapters are devoted to a thorough discussion of these solutions.
Morton” has made a detailed study of the second equation of (49) after
Forsyth, but he has limited his work to the form of the trajectories
only and has left the variation of ¢ out of account. Discussion of the
second and third equations was done by Droste,” but very briefly.
Hence neither of their works can be considered to have completely
exhausted the necessary investigation. ‘

Chapter V.

DisTRIBUTION OF THE SINGULARITIES.

1. In oder to obtain the real expressions with real arguments of
the series (68), (69) and (70), we at-first discuss the distribution of the
singularities among the roots of the fundamental cubic (89).

As we see from (63) and (65) remembering the properties of the
o-function of Weierstrass, the variables s and ¢ admit®

(A) ‘!’;:81+y 0, (2(0,2&)')
(B): "’”Q'VB&EO, (2w, 20)

as the infinity points and indeed as the logarithmic infinity points.

From (54) r has an infinity point at @(\V'{—&)—}—E_O, or S"(\VE )_@y,

‘If+3] +9y=0 (20, 2w'). This point coincides with the above singular-

ity (A) Hence the only singularities are at (4) and at (B). The same

1) Morton, Phil. Mag. 42 (1921) 511. Also, Whittaker, Analytical Dynamics. Third
Ed, did the same thing. Forsyth, ‘Proc. Roy. Soc. London. 97 A (1920) 145; M. N. §2
(1921) 2, used Legendre’s elliptic functions.

2) Droste, Proc. Acad. Amsterdam. 19 (1916) 197. Of course the deduction of these
equations! by these writers is quite different from ours and more elementary.

3) The following expressions are the congruence relations in the theory of numbers.
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can be seen from (68), (69) and (70) that the point (A) behaves itself
as a pole and a logarithmic infinity point, and the point (B) as a
logarithmic infinity point. Mathematically the pole at (4) of (70) can
be transformed away by a suitable substitution. The singularities which
ought to be discussed are (4) and (B°, provided that the three roots of
the fundamental cubic e, ¢; and e; are all distinet.

Thus in (63) and (85), '
. hs Py
if h,@'y<1 @/2 >>0

then the infinity point for (—+ 00 is

(4, \EZ—BE—yEO, 2w, 2'),
and the infinity point for t-—»—o0 is
(4 VERLy=0, (20,2));

hg p,
) <O

then the infinity point for #—>4-00 is

() VB =0, (20,20,
and that for t——00 is
(4,) ‘L'Qfﬁl—yso, (2%, 20').
It s <o,
b’z
then the infinity point for {— 400 is
(B2) Y—_‘_é—'g'—zEO, (2w, 20'),
and that for {—-—o0 is
(By) EEB =0, (20,20);
it 1m0,

h1g')'
then the infinity point for ¢{— +o0 is

(B) ""2”*’ 12=0, (20,20),
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and that for {—>—00 is

(Bz) ‘ﬂ%@l—zao, (2(0, Qw’).

The question is whether they are real or not. If they are real, the
motion is asymptotic at these points, that is, the moving particle infinitely
approaches to the point corresponding to (4) or to (B) as the time tends
to +00 or —oo. They are not logarithmic singularities for (70). Hence
the trajectory of the moving particle in space is not necessarily asymptotic
at these points. Such asymptotic character of the motion only occurs
when the two of the roots of the fundamental cubic coincide, as will
be shown in Chap. VII. Denote the singular value of ¥ by .

For (4): Ya=—5—2y, (2w, 20"), or Yo=—B1+2y, (20,20');

for (B): «—]f-glE———,@]_?z, (2w, 20", or Yy= —B1+22, 2w, 20").
The value of ¥ to which the particle tends for {— --00 is the same for
the approach of ¥ to ¥ in the domain Y>3 as for the approach to
the same point in the domain Y <4, that is, the same in the domain

p>r as in the domain »<p, where r denotes the corrosponding value
of r for the singularity.

At (.A.) . x:@y:_%’ 71:0, P==00
at (B): m:@Z:—S—, u=1, r=o.
Thus the corresponding singularities for w are =0 and u=1, and those
2

1
for z are m:-? and z=—.

2. Next we examine in which domain divided by the roots of the
cubic (39) these singularities are located.
The fundamental cubic (39):

Ulw)=u'—u* 4+ u—A1—u) - (72)
with
o o’ :
u=—, A= =hg,
r h12 # :
can be written, by (51), in the form :
X(x)=44"— g — gs=4(x — 1)@ — e2)(x — €3), (73)
with ' )
1 2 2
:4(————7\), j :4(——{————7\—7\ ),
=N PN T M -
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and
1
e1+ez+e3=0, 61624—6’263—!-6361:*(%‘—7\)’
2 2
61626»2-— 7 E‘?\ 7\/11
1 o
At e r=e;, U=Ui=e +—, r=r= ;
3 - 1
1 -
3
at e,: T=0¢,, u:uzzeﬁ-é, P=1y= O&]?
€2+ —
s
at es: r=e¢;, 'M:’Lbs:@g—i—i; rT="r3= “_.
3 1
e+
3]

At first we consider that any of these roots is distinct from others.
Let us write the cubic (73) in the form :

1 2 2
TN, p)= '3—-<~——7\) — ey W ) 74
fla s\, p)=2 5 v =573 p (74)
It ought to be remembered that A and w can not bernegative.
(i) At g=+00: J(4o00o 52, u)>0;
2 (2 )
t o e="-: A )=Ap>0;
ab w=- J 3 B)=Ap
at x=—00: f(—o0;, u)<O0.

Hence there are no or two real roots in the interval —§<x< + 00,

(i1) Consider a curve

L): y=flz; 0, p)= xQ—é«x—% (x+%><x~§>

I

and a curve

©@:  y=f@;n, mzxg-(-;)——x)x—(%Jr-?“f—xqﬂ).

The curve (L) intersects the z-axis at m:% and at = —% and -touches

) SR s e

it at x:—%. If we take the difference of the abscissae: for these -two

curves, we get

yc—yL=7\<x——§-+u>,
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where y, and y; represent the abscissae of the curves (C) and (L),
respectively, for the same value of the ordinates. Hence the curve (C)

lies above the curve () while .fc>—§—— W and (C) lies beneath (L) while

<

x<—§———u; and (C) and (L) intersect at m:—g——p. As >0, the largest.

value of z, for which these two curves (C) and (L) intersect, is +~§~.

Hence the intersection must occur for smaller values of . Hence the
curve () lies above (L) for x>%, whatever g may be. Hence ((') can

not intersect the z-axis for the values of x such that x>%. Thus in
(3]

the interval —z—<x< + oo there is no real root of the cubic (74). (See,
Fig. 1)
(iii) The ordinates of the extrema z, of the curve (C) are obtained

1ye . ¥Y1—3x
b (_yC_:O’ 2. 6., e + .
Y dx 3

As A>0, 0<]opl < % Hence the double roots can be found only in

the interval —%<x< +%. For ?\>~é—, there occurs no extremum.

<

Hence more than one root of the equation f(z;A, p)=0 can not lie in

the interval —oco<g< —%. Hence one or no root is found in the

. 1
interval —oco<zp<l — —.

¢

(iv) At x:—-é—, f(—%;;?\, ,u:)—_——x(l—/ﬁ). If w>1, we can expect

a real root of f(x; A, u)=0 in the interval —co<z< ——%. If p<1, there
is no real root in this region.

(v) For )\:% the curve (C) reduces to y:wg—(é% -—%) This has

an inflection-point at =0 and the tangent at that point is parallel to
the z-axis. Of course there is only one real root in this case.

Especially for ,/,:-S—, this inflection-point falls at the origin of the

co-ordinates and the three roots of the cubic coincide at this point.
This is the only point in which the three roots coincide, because the
point of parallel inflection to the g-axis is one in which the three con-
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secutive points have the same abscissae and the inflection of such nature
can only take place on the g-axis.

From these considerations we infer that the possible cases of the
distribution of the roots of the fundamental cubic (73) among the
singularities are as follows:

A >0, 1. e., there are three real roots: es<<¢o<<e.

Case 1: u>1, then 63<—'%—<62<61<‘§~;

Case TI: w<1, then —%<eg<62<el<—§-;

A<O0. There is only one real root.
1

Case IIT: w©>1, then 63<—§<§;

Case IV : wp<1, then —%<ek<%. (k=1 or 3)
Fig. 1 shows the relative positioh of the various curves y=f (z; A, p)

for different values of A and u, which correspond to these different
cases of the distribution. Two important curves y=f(x; o, u) and

y:f(:c; %, ,u,) are also drawn in the figure.

H

7=f("5 0’/’()

/
/ Forbidden
quc e

Fig. 1.
3. Our next step consists in the investigation of the sign of the
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discriminant A of the fundamental cubic (73).

A.—_—~64x[x2+(2—9y+%4zu2)x+(1—M)]. (75)

If the quadratic in A enclosed by the parenthesis in this expression has
no real factor, then A<<O for A>0. For A=0, A=0. This is the case
of the curve (L) in Fig. 1. A also vanishes for ’

x2+(2-9u+?f—m)x+<1~m=0. (76)

Denote the two roots of this equation by A; and A,

M, o= -(1~3p+—2—87,f>4_r‘/(1—3#+%»2) —(1—p).

2 2" 8
9 97 L\ 27\? 8\
T¢ (1_~ 27 2) —(1— E(—> ( __) >0,
SH g (1—p) 5 )M
8 3
: (o 5)eo
or 1 | , wl @ 9
, 8
or, as p >0, if §<,u,,

then A; and A, are both real.
If 0<M<—S—, then \; and A, are complex.

Suppose then that a; and A are both real.

9 27 2 : 25 2 >
1—= S22 for == (Y3 —1)<u<—(y3 +1
Sht g H or 3V3(V <p 8‘/3(1/ +1),

or 0.275....<pu<1.051....;

2 —
and —oo< <l == (¥Y3-1),
1—%#-{—2—;uz>0 for 9 3Y8
— (Y84 1) <pu< +00.

3v3(v +D<p< +

9 27 2\°
= ‘/(1—7#+——8—/b) —(1—p).

P

Further according as p=1,

9 27 ,
1—=p+=
2 Mg

Hence
for 0.888....<wu<1, \; and A; are both positive,
for 1<wp<1.051.. ,
for 1.051 .. <p<oo,
Thus we get the following schema :

} one of the roots is positive.

- © National Research Council of Japan ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1930JaJAG...8...67H

98 Y. HAGIHARA. [Vol 8

Table 1.
0=p<0.275...., A1, A, complex, A <O, Case IV ;
0.275..<p<0.888.., | A1, A5 complex, A <0, Case IV ;
0<A< Ay, A <0, Case IV ;
0.888... .<H<1, O<>\2<)1, real, {XQ<K<R1, A>0, Case II 5
M <A<0oo, A0, Case 1V ;
<A< .
1<p<1051...., A, <0<, real, 0<A <A, 4>9, Case I
: A <A<, A <0, Case I11;
LO5L....<p<+00, | A,<0<A, real, {0<7‘<7‘1’ A0, Case I
A1 <AL 00, A <0, Case III.

In this schema the greater real root of the quadratic in A of (76) is
denoted by A: and the lesser by 2.

My Ae= — (1—_,u+ ) 27]/ (,,,_*

These values A;, Az are determined by the value of . When p is given,
we can judge by this schema which case of the distribution can occur
as we vary A with that given value of u.

4. We may proceed to the discussion of the sign of A in the
following manner.

(75) can be written

A= ~647\l:2£7\f» O+ D+ (0 1)21 (77)
A=0 for A=0 as before.

A=0 also for

24‘W — @0+ Dt (1 4+ 1)'=0. (78)

The roots ui, ws of this quadratic are

Mo, prz= {(%+1)+v<97~+1) 277»(7\+1)2}-

97
:H{<97\+1>1‘V—_(3W}'

If 7\<%, p and u, are both real and both positive,

because |ON+1]|>VON+1 —27TA(A+1)°;
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If 7\>—11))-, p1 and pe are complex.

Hence we get the following schema :

Table II.
0<p<pt, A <0, p<l1, Case 1V
“ p>1, Case IIT;
< .
0<X<—1‘, [’41>[sz>0, real, Pro<p<ph, A>0, {[L 1, Case 11 ;
’ p>1, Case I;
p<p<oo, A <0, <1, Cas§ Iv;
p>1, Case III;
1 F‘<1’ Case IV H
3 <A <oo, Jia, pia cOmplex, A <0, {p>l, -

By this schema we can judge which cases of the distribution can
occur as we vary u with a given value of .

5. Tig. 2 shows the curve A=0 in the plane Au. In the shaded
region A >0, while in the other region A <0. The Roman characters in
the Figure represent the cases of the distribution corresponding to these
different domains of the values of A and u. The upper branch of the

A

Fig. 2.
curve is asymptotic to the axis A =0, as we can see from (75). There
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is a cusp at x:é, M:%. At p=1 the lower branch of the curve in-

tersects the A-axis. w=1 is the boundary line for the Case I and the
Case II, and also for the Case III and the Case IV.

The numerated lines parallel to the p-axis show the mode of suc-
cessive transitions between various cases of the distribution as we vary
@ with a given A.

1. L<7x<oo,
3

2. Ly,
3

3. o<>\<é, pa<tn <1,
4. O<X<%, pa<py =1,
O
5. 0<7\<—§—, <1 << py,

6. 0§7\<—§—, 1=p<py. This is the p-axis.

The lines parallel to the A-axis with dashed numerals show the mode
of successive transitions between various cases of the distribution as we
vary x with a given u.

. 0<u<0.888 ..,

9. 0888 ...=p. For A=

wo |~

the three roots e;=e,=e¢s.

3. 0.888....<u<l,

4, 1<u<oo. _
The curve in the Figure represents the locus of the double roots as a
function of A and p. The upper branch of the curve corresponds to e1=e;
and the lower to es=e¢;. The cusp corresponds to the three equal roots
e;=—cs—es;. Thus the three real roots exist in the shaded region, while
e, or e; only exists in the unshaded region. The part of the region

IV lying above the curve A =0 between %<p,< 1 corresponds to the case

in which there exists ¢; only and the part beneath to the case in which
e; only exists. We return to this argument later when we discuss the
~ correlation between the various possible types of motion.
6. To sum up, we get the following cases according to the various
distributions of the roots of the cubic among the singularities (A) and(B) :
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Table III.
Case I: 63<—":‘];‘<62<61<'§‘, p>1, (A) (B) both real;
Case II: —%<es<e2<el <§, <1, (B) only real;
Case I1I: es<—%—<—32— p>1, (A) (B) both real ;
Case IV: —’:]§‘<8k; <%,(le-—-1 or 3) p<1, (B) only real.

The half double periods of the elliptic functions @ and o' should

/
be such that @ and 2~ are both real, in order that we may get real
)

values of the functions for real arguments. Moreover it does not restrict
!

the generality of our discussion to assume that >0, 2->0.

3
Thus the real domains of the elliptic functions are
(a): <z <+ 00,
and (b): ez <x<es.

In the cases (I) and (II) these two domains both exist, but in the
cases (II1) and (IV) there exits the domain (a) only. The singularity
(A) is always in the real domain (a). The singularity (B) lies in the
real domain (b) for (I) and in (a) for (I1I) and is imaginary for the cases
(II) and (IV). According to which real domain we are considering, we
distinguish sub-cases (a) and (b) in each of those cases. It hardly need
to be mentioned that (b) exists only for the cases (I) and (II).

7. By the well-known properties® of the elliptic functions of
such nature, we get the following table:

Table IV.

real | '
)
u argument | pw gw
O....00 w +w. ... real negative ;
, , W—w s . .
@ ot w w' = ; €. .., positive imaginary ;
wtw .. .0 w=w—w' ‘ ... .6 real positive ;
[J v w ‘ . - .
w'....0 w =7 €3....—® negative imaginary.

1) Appell et Lacour, Principes de la Théorie des Fonctions Elliptiques et Applica-
tions. (1922) Chap. II1.
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In the subsequent treatment we employ the real quantities with
primes introduced in this table. The following formulae, together with
(67), will be used in the transformations,” in order to write out the
real expansions of (68) (69) and (70).

(o]

2 ~ T
% ' :_i__g(z_) "o MW
(w+ o) ” - ;’l_qm "
=" ! L q" s nTW
=+ +2— _sin ——,
ke @ wg{'l*q“ w
"7::(0, v’:gw,,
a'('w + w') =+ 0'(“”)0‘3(10)6"—""’”,
: & . L—cos nrw
=1 q ()]
g =g P 70
!
lo M:100M+ "(w—w),
* ol+a) ) 7w=2)
S(w+20")=8w+ 24,
0'(’60 + 2(0') = _o--(w>62n’(w+w') ,
¢liw)=—iCw,
Z(’W)::(’w, 2, —_gs>,
rf(’U-*l-w') — 0-(,17,_‘_(0!) o
rw—w) o) )

Chapter VI.
Nox-DeceNErRATE CASES.

In this Chapter the real expressions in elementary functions with
real arguments of our formulae (54) (63) and (65) are obtained in the
cases when the roots of the fundamental cubic (73) are all distinct. In
these cases we call non-degenerate according to the usual terminology
in the theory of the elliptic functions. Otherwise we call degenerate.
Degenerate cases are treated in the next Chapter.

(Ia) << —%<02<e;< %, ea<z<oo, w>1.

1) Halphen, loc. cit. p. 426 and p. 140.
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We put
V=1, y=y +o, z=z, h>1;
Bo=B +iB, B=8:+1i8:",

with real constants By, 8y, B and B3

Then ;

S‘}'y:-I-&/\/?T%——l, P'z:—gg]}i, {@”y:ﬁ.

‘ by I 1

(54) (63) (65) change into:

I .
_f1_n _ 20w nmy'
_{ 3 [6) Cl)hﬂ/hg-—l Z]— gln ® } \‘\p+6‘)
~—i’ A7 os T y'
— w w
nmT
te sin -—gw / 7 o
o e i )
T MVEE—1 n } 1—g¢* o 20 S
'—2—((301‘-!—,8'3)
OLflg

(e _£>+%§?EL(°° T sin 1T y)
by ®/ 9m—1)5 © \&=t 1—¢ ®

fu (L— ﬁ)}(‘l'-l-,@l)

QOC(hg—l)
sin 7 (f_tﬁ_l T )
1 2w 2
+— log
hs sin _@_( ‘!f + 61 )
20\ 2
sin 27 2 sin 7y
+ S| 49" » 2/27@_3> ®
w1 | hs n (hi—1) % 7
2y nr ,\ q"
cos y't— sin —— (Y4 8),
+ alhi—1)w w y}l—-q% 2 K !
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2
u_l:'"n_“L( o ) g
© 7 1—cos T (y+8)
2w

2 oo 2n
—2(L> " cos gw (+B1),
w

@ =1 1_g2n
2(7&%—1) e oL
m T
2 153 '
—703 B4 = ————2?3-?& . .
b3 Q(hg—l)‘l

The first series has no singularity.

The singularity in the third equation is not to be afraid of, for it
can be reduced mathematically to an ordinary point by a suitable
transformation. But physically speaking, there occurs a collision with
the central point-mass. '

The second series becomes logarithmically infinite at

%ﬁl——ZEO (20), or Yy=22—03; (4w), as t—>+00;

VB 4220 (20), or Fam~2— i (o), 15 t>—cx.

These are the only real singularities of our solution.
There are two types of motion to be distinguished :

(ee) %<x_S_oo, or O=r<c;
(3]

B 61§x<—2—, or a<lr= .
3 e+
In («) the motion starts by ejection from the central point-mass
and approaches asymptotically to r=e, or starts asymptotically from
r=o and reaches the central mass as a collisional orbit. ' (Fig. 3.)
For both these cases (o) and (B) the motion starts asymptotically
from r=e¢, Y= —2z—p; for {—>—00, and attains the maximum radius

vector r= at Y= — B, and then approaches asymptotically backward

er+3
toward r=c, Yry=2z—p0; for t—>+00. Here the values of z, similarly the
values of % and y appearing in the later part of this Chapter, are

determined only by congruence equations to 2». The additive integral

© National Research Council of Japan ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1930JaJAG...8...67H

No. 3] THEORY OF THE RELATIVISTIC TRAJECTORIES ETC. 105

multiples of 2w are left undetermined. The possibility of an infinite num-

¥

ber of the values of z, ¥ and o caused by this indeterminacy is avoided

by making a convention that we should determine the integration

constant 3; so that the values of z, together with those of y and of gf,

are contained between o and 2w, that is, by restricting ourselves to the
fundamental parallelogram in the theory of the elliptic functions. This
convention amounts to fixing beforehand the direction, from which the

longitude is counted. Let this convention hold all through our argument.

The geometrical trajectory in space is periodic between r=—%__

et+¥
and 7=0, provided that r=0 is a mathematical point.” The period,during
which the radius vector passes through its initial value again in the
same ‘sense, is 4w for 4. During this interval v makes a complete
revolution from infinity to infinity, reaching its maximum?® :

2 o n
a=(-T ){34—16 > -1, (n=1,3,5,....)
2w 3 s l—qm

for ¥ +2:=2w. Its appearance is thus periodic, but the point of the
maximum radius vector constantly advances. The tangent at r=-0 at the
moment of returning to the point, is deflected by a constant amount.
Let 40=2p +», where p is a positive integer, which may be zero, and
v is a positive number less than 27. Then the geometrical traject-
ory makes p complete revolutions and a fraction of one revolution
round the central mass in one period between =0 and the next re-
turn to =0, and the advance of the point of the maximum radius
vector, or the deflection of the tangents at r=0 at the consecutive re-
turns to =0, 1s » in the angle. This quantity depends on the integra-
tion constants A; and /; through e.

Mathematically, if 20 and 7 are in the ratio of an irrational num-

ber, then the domain 0<r< —%  ig covered everywhere densely, ex-
a+3

cept the point r=0, by the points of the geometrical trajectory. If 2w

and 7 are in the ratio of a rational number, the geometrical trajectory

assumes the same position after a certain number of revolutions,

1) A similar argument can be seen in Newtonian mechanics in papers by Sundman
as he discusses the analytical continuation of the motion of three bodies after a collision.
Sundman, Acta Societatis Sc. Fennicae. 35 (1909) No. 9; Acta Math. 36 (1912) 105.

2) Halphen, loc. cit. p. 447.
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which 1is the least common multiple of the denominator and the
enumerator of that ratio. Then the geometrical trajectory is periodic.
(Fig. 8 and Fig. 4.)

Fig. 3. : Fig. 4.
Inadmissible. Pseudo-Elliptic.
2r <20 <3m
Or<dz <3m

However the actual or the physical trajectory is cut off at the
points where the geometrical trajectory is intersected by the circle r=c.
The moving particle asymptotically approaches to one of these points:
V=1, r=a as {—>-+00 and to the other : Y=, r—=c as {—>—00. This
asymptotic approach is such that the velocity falls off continuously to-
ward zero at this point, but not such that the particle performs an in-
finite number of revolutions near r=c as will be shown in some of the
degenerate cases.

Thus the types of motion are divided into two: (&) and (8). But
the type (e) is physically improbable.

In fact, it is quite improbable that in any star the distance r=o
or 2m from the center lies outside its radius. In order that the radius
of a star with its mass comparable with our Sun be equal to the dis-
tance 7=, its density ought to be about 10" times that of water,

1) For stars of different mass or of different radius this relation is of the form:
(radius)? x (critical density)=constant, or (mass)? x (eritical density)=constant; 3. e.,
(Sun’s mass)?
(mass of a star)? ’

(critical density)=10'x

or .
(Sun’s radiug)?

(radius of a star)?

(critical density)=1017x
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while in the densest star, the companion of Sirius, a white dwarf, the
density is about 6 x 10* times that of water.” There is no such diversity
in the masses of the stars as to overcome this tremendous high magni-
tude of the critical density. Therefore the orbit inside r=ec is physi-
cally highly improbable. Hence even the type (8) is physically a col-
lisional orbit or an ejectional orbit,” because the radius r=a is situated
completely inside the star.

To make the circumstance still worse, the type of motion (&) is
physically inadmissible.
~ In fact, the coefficient of d#* of Schwarzschild’s line element square
in (20) vanishes at r=c. This shows that the velocity of light becomes
zero at this place. As r passes through this value, that coefficient
changes its sign, the result being the same as to take ¢ imaginary.
This is inadmissible by the principle of relativity. Hence the motion
for r<a should be excluded. The four dimensional manifold is, on the
hyper-surface r=c, flat in the axis of » and cylindrical in the axis of
t. On the hyper-surface r=0 the circumstance is in the opposite. Any-

1) The most reasonable explanation will be that this is the limit of the relativist-
ically possible density. This limit of physically possible density obtained from the Fermi-
Dirac statistics in the theory of quantum mechanics may be less. Stoner, Phil. Mag. [viil.
7 (1929) 63, gave the limit :

mass of the Sun \?2

mass of a star )
This is by far of low density than our limit. As to the last factor see the foot-note of
the last page. Refer to: Pokrowski, Zeitscher. f. Phys. 49 (1928) 588, who gave the

limit :

3.85x 108

4% 108,

Anderson is of the opinion that, when the mass of a star is large enough, the densi-
ty has no maximum. His consideration is based on the variability of the masses of the
electrons as the density increases, and comes from the fact that the maximum density
varies with the mass more rapidly than its square. He adds that this circumstance is in
conformity with Milne’s latest theory on the internal constitution of the stars. Never-
theless Anderson concludes that the density of the nucleus of a star can not have an in-
finitely great density from the cosmological point of view on the theory of relativity and
that, in the case of our Sun, the limiting density ought to be 6.8x10Y7 times the density
of water. This is of the same order of magnitude with our limit. Milne’s view is to
abondon the gas law in order to avoid the density from becoming infinitely great. Cf,
W. Anderson, Z. f. Phys. 56 (1929) 854; 66 (1930) 280; E. A. Stoner, Phil. Mag. [vii] 9
(1930) 951 ; E. A. Milne, Nature 126 (1930) 238; 127 (1931) 16; Observatory. 53 (1930)
239; M. N. 91 (1930) 4.

* 2) A similar kind of argument can be seen in the problem of the collision of three
bodies in the Newtonian mechanics. Cf., Levi-Civita, Acta Math. 30 (1906) 805 ; Armellini,
Rendiconti. Atti Accademia Lincei. [v] 24 (1915) 184.
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how the region »<<e does not belong to our world of events.

The type of motion (3) may be said to be pseudo-elliptic. This
type of motion is characterised by the property that its geometrical
trajectory in space is such that the radius vector oscillates periodically
between zero and a finite constant limit greater than o with the period
different from that of the longitude and the point of the maximum
radius vector constantly advances by the same amount, while the
dynamical trajectory is the outer part of the geometrical trajectory cut
off by a circle with radius r=c and is asymptotic for t——00 to one
of these two intersections and also for #—+00 to the other point of
intersection. (Fig. 4.)

Suppose that ¢; and e; coincide. Then the domains of the two
types of motion (Ia) and (Ib) have a common region r= p il = p j— -

~ This circle in space is the so-called cycle limite” in Poilncgré’s fermi-

nology, which means that possible types of motion approach to this
circle from both sides asymptotically, each making an infinite number
of revolutions round the central body. Hence the types of motion (Ia)
(Ib) together can be continued to the type (III a), when e¢; and e. be-

come imaginary through this limiting type. e; ought to pass z= _L

3
in order that we get to the type (II b).

(IT a) ——%<eg<€2<el<—é—, a<z<oo, w<l.
We put
V=1, y=uy, 2=z, hk<l;
then

I -20(4 Y 12 ’ Zah% 1] 20&2
=2 TR, =2 gy 2
p'z o Vv i, @ " P n

P erm—{ - oty (B ey )

sin—"-(y + 1)
T 2w

cosh —T4' —cos = (Y +By)
® 20

1) Poincaré, Journal de Math. [iii] § (1882) 251. A detailed consideration is found
later.
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I ——————— Y ta)r
hay1—h3

@

j sinh -7 fz/' sin ——?L (¥ +B1)
1
1

! 1— cosh—— 9y cos—~— (4o + 1)

}— S 4 cosh nmw yr
n=1 ' @
Sinhﬂz-y'
4o ® " . nmw
R — gin - (Y 4By,
hﬂ’l——h% " glmgﬂn 1 20 <‘7" »/31
2
8= { (5= )4 D gy 4 1)
cths hs ® 21— }13)2‘ @
T ( n 1 )}
gy (m 1
Za(h"—l) 3 (Y +5)
. T
) o sm;;(\!f%—&)
2
20 (hi—1) @ cosh I_y’—cosi— (W +8)
2w
‘ ("l"+81 +z>
+#1_10g 2(1)
hes sinﬁ(ip—t@L’— z)
20 2
sinh-"— ¢’ sin (\IH—BO
+ —mlgx tan™’ ) 2
2(1—h3)3 "1—-cosh —W—y’eos T (¥ +8)
® 20 '
. g B nar 2
+Z‘5~_4_ o ) ? 2(2h2—~3) sinh w y
S n o 5 n
L ]
2mh, nw oy q* nw
I —- cosh
calhi—1)w @ v 1—¢*™ " 20 )
3. e N2/ 4o (48
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\2 o 2%
— 2<l P s T +61).
) ) ; 1 . q2n 2(0 (‘I/ 61)

This case is very similar to (Ia) and scarcely needs any description.
It is pseudo-ellipiic. The geometrical trajectory oscillates between r=0

and r= just like in the case (Ia). (Fig. 3 and Fig. 4.). The

2
et 3
advance of the point of the maximum radius vector and the deflection

of the tangent at r=0 at the consecutive returns to r=0, are both in
the sense of the motion of the moving particle, that is, direct, because
20>, If (2p + )7 <20 <(2p 4 2)7, but near to 27, then it looks as though
the point of the maximum radius vector were in a retrograde motion.
To see the relation 20>, we start from the definition of the modulus
of the elliptic integral :"

-1 dz
v VA—E2)1—2°)

K=

As F*<1, we have®

1 v
K> f __dx 7
0 ]/l—’Uz 2

K>
2
But?
_K __,
N/61—63 ’
So long as e;—es<1, —2~m—<l.
T

Now the relation ¢;—es<<1 holds for the cases (II) and (IV). Hence,
in the cases (II) and (IV), the advance of the point of the maximum
radius vector and the point of the minimum radius vector, if either or
both of them exist, are always in the sense of the motion of the mov-
ing particle. This holds not only in the cases (ITa) (IVa) but also in
the cases (ITb) IV D).

Two types of motion in this case can be distinguished :

1) This inequality can be seen also from
2K — @1 (0)=1+2g+2¢"+2¢+ ...

Ci., Appell et Lacour, loc. cit. p. 140.
2) Appell et Lacour, loc. cit. p. 164.

© National Research Council of J apan * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1930JaJAG...8...67H

No. 31 THEORY OF THE RELATIVISTIC. TRAJECTORIES ETC. 111
() %<m:<;oo, inadmissible. Fig. 3.

©) 61§x<%. The motion is asymptotic at r=o.

The corresponding value of Y is the same as in the type

(Ta). Fig. 4.
If ¢; and ¢, coincide, the circle r=—2 = & 1 is a cycle lim-
61+—?—: €2+~3—

ite and the type of motion changes into (IIa).
(111 a) 05 < ——%<%. ea<lp<oo. w>I1.

Put

Y=, y=vy, z=z, hi>1,

then

p 20 v ' 2c0th, 2a®
= — /\/h‘!-——l , z:————i " = .
) Tn 3 14 I y Py h?

B TR ey )| O

sin ZL (¥ +B1)

w

“ cos L —cos T (Y+ )
) Yo
sin _'7_7"( v+ 6. +y>
o log 2w 2
73 g
ha Yhs—1 sin l—( ————-—'—\p 5 y)
20 2
2n

OQE dm nm 4o . q . nr
+ ——— 08 — ¢in 0 s ,
n=1{ (0] w y 75/l1Vh§—1 @ 5/}1 __qm n % (‘I"+:81)

2 1 ( Nz 2hi—3 ( nY
—~ (et Y SR ( SR 0 WL k- S 1Y
ohs (eut+5) { I & ) )+ 2h—1)% <Y ) )

iy (g) e

Sin —%—' (’\1"'"{-,81)

+

h1'77'
20 (B2—1)e

+
cos—Y _cos - (Y4 8)
@ 20
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Sinl ji_lgl_ +z>
+ Lo 20 2
h3 Slnl<’\l,‘—*_'6’1 7)
20 2
i v+ B
1n —— +
_ 2h;—3 Io 2w 9 1/)
20F=1F " i 7 (¥ ))
@ 2
( gin 27T,
S P 2 9
+Z ii, e 2(27137::7)7 sin 7
n=1 /l'; 7 (hg—l)?n ®
27hy nar q*™" . nr
cos sin +8),
ot(h;-1>w © ) y} 1_g2n % (‘If Bl)
SO S EY (_vr.> 2
3 () 2w

1—cos - (Y+£8y)
2@
2 o

~o(=) > na”_ cos ST+ 8.

) 77.:]._] l_gzn
The motion is asymptotic at (A) and (B). The geometrical traject-
ory in space at (B) is not asymptotic. There are three types of mo-
tion which can be imagined.

(o) %< ¢ =00. The motion is to occur from =0 to r=c and

asymptotic at r=c. This type is similar to the types (Iac)
- (IT ae) and physically inadmissible. (Fig. 5.).

() L <z = ocl . This is impossible because #<O0.

es+—
T

<) ~—;— <x<g. The motion occurs from r=c to r=o00 and
asymptotic at both of these points. (Fig. 6.).
Consider the only possible type (:3).
At r=a:
\?31:‘ — 81— 2z, as {t—>—00;
Y= — LB+ 22, as {—> 4 00.

At =00 :
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for t—>—00, it 1<hI<S
Y= —pF1—2y, 2
for t— 400, if%<h§;
B for t— —o0, if§<h§;
Vo= —0B1+ 2y, 2 3
for t— 400, if 1<h§<-2—.

These give the asymptotes for the trajectory in space for r—oo.
The geometrical trajectory starts asymptotically from either of these

asymptotes according to the sign of hg——z— and reaches the origin at

Y=—0B;, and then tends to infinity asymptotically along the other
asymptote. The trajectory is symmetrical with respect to Y=-—p3.
This geometrical trajectory turns by an angle 4y during two consecutive
asymptotic approaches to infinity. If 4y=2pm4v, where p is an in-
teger, positive or zero, and » is a positive number less than 27, then
the trajectory performs p revolutions and a fraction of one revolution
during two consecutive asymptotic approaches to infinity. (Fig. 5 and
Fig. 6.)

The actual trajectory is this geometrical trajectory cut by a circle
r=o and these two points of intersection are the points of asymptotic
approach as the time tends to4+o0o or—oco. Hence the particle moves

either from Yr=vrp, r=0 to Y=, r=00 if hg-—‘—i*>0, and to Y =14,

Fig. 5. Fig. 6.
Inadmissible. Pseudo-Hyperbolic.

2 <4y<Bm 2mr<4z<3m
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r=00 if h§—%<0; or from r=nlry,, r=00 if hi—%>0, and from Y=Y,

r=o00 if h%—% <0, to Y=g, r=ct. All these approaches are asymptotic.

This type of motion may be called pseudo-hyperbolic. We call hyperbolic,
because the moving particle approaches asymptotically to infinity along
two distinet asymptotes, one for ¢——0co0 and the other for {—+oo.
Pseudo has the same meaning as in pseudo-elliptic. (Fig. 6.)

becomes

Especially, if es coincides with z= -%, that is, r=

63‘["8—

infinite, then we call the type of motion pseudo-parabolic. In this case
y=0 and the two asymptotes, Y=+, and ¥=44, coincide. Hence it
can properly be called parabolic in analogy with that in the Newtonian
mechanics.

The type of motion can be continued to (IVa) when ¢; passes over

to 2= —%—. If e; and e; come into real existence, then the type passes

into the type (Ia) through the state with a cycle limite.

(IVa) :—%<ck<—§—, (k=1 or 38), ex<z<oo, u<l.
Put
"‘V:‘P; y:i’y', 2=z, hgz<1,
then
! 20077 ! 2oths 20
:_q,__}/1_h ’ =—— My=2"_.
Py==t, T e, %
2(h32—1) s }_ 1 o V(y'n - ,>
T (s+6°)_{3 o b=\ Y }w’“g‘)
sin (4 3,)
20

® cosh-Tq —cos - (Y + Br)
3] 2w

g sinh 2y sin "~ (Y +By) |
o) 20

-1

ll/thS —1 ll_cOShly, OOSE('\!"I'Bl)
® 20
LN (4 nmT 4o N " i
T I
;“]w cos wy nhll/l—-h:fSln wy 1—?12”8111[2(0\\!’—*_61),
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"T (Cot + Bs) =1 — ~<§ ) —3 (§ + == Y )
o3 w 2(1 h 2)0
e 5]
%0 (hi—1) 3 (¥ +B)
sin = (Y -+58) s1n~(\lf+31 >
n Tyt 2w +i loo w\ 2
2 . o .
20(hs’ = Lo oo Ty’ —cos (Y +By) s sin 3(‘V~——+ Bl~z)
@ 2w 20\ 2
inh Ty sin 7 ) '
o3 . sin - y' sin zw(\}f + 5
3 w s
2(1—h?)2 1—cosh—"9' cos—(Yr+5;)
' ) 20
- . nmT
oo i— h—— !
+Z{4sm wz+2(2h32_3) sin wy
= \h 2 - hs?*® n

27Th1
. 2
u——;—: 24 (i . 2
1—cos 1&\# + By

2n
cosh My’ } 9 o sinql’lr(\[r + ),
® 1 20

_2<1>2§ 0™ cos BT )

@

There are two types of motion which can be imagined.
() O0=r<e, Inadmissible. Fig. 8.

B alr=

The motion is asymptotic at r=o as in

6k+§'

(I1Ta), but the singularity (A) does not exist. The motion
is similar to (Ia) and (ITa) and is called pseudo-elliptic.

Fig. 4
The type of motion can be continued either to (IIIa) by making
e1 pass through x:-—%, or to (IIa) by making e; and e, appear as
real. If e;and e; coincide and then disappear in the type (IIa), then this
type (IVa) will appear. At that moment the only real root is considered
to be ¢.. But through various transitions it may change into ¢; and

crosses x— -——é— to the other side.
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(IIb)
1 2
———8‘<63<62<61<—§, 63<$<62, H‘<1
Put v=V9'4+20', y=diy', 2=z, 1°<1,
Bo=B+43", Ba=05+15,
where B/, 8y, 8 and B4’ are real constants. Then

So’y~~z~1/l by, Pla= 208 @”y:Qa

b

°

h1 7112 )
2(hs®—1) / 7 o )
=25+ B =~ + ’
TR {3 o RIT o T8
{4 4 sinhniry’ N
T nﬂ-y o (2] q s T
— cosh = )
; - ot Ry - e s1n2w(‘1’ +B1)
gy 2 ﬁb%_,__( )
R R e ey = (L
JL_( ) / ‘
+20¢(h3 1) }-(«lr +'81
o sin 27 smhn y
+ 4 @ _ Q(Qha —3)
=~ n (1—hg?)** 7
27h, nw ,} A
+—=—~—cosh== o ’
a(h34m1>wcos Y owsin Qw(\” +8)
- ) "q cos¥T (4 + ),
gl M ""
o h;_ﬂ" T hff‘:y}
! !
N _o® z—n'z 20t ' (_ )
ahf (- hZ)W( WY ey uf_n B
The motion has no singularity in the whole duration of motion. - It
is periodic in the interval es=gz=e¢; or 1 sr=—%_. The period of
€2+—3‘ 63"1"%

the motion with respect to r is 4w for ¥/, and

2wh; __l_*( ) )
h° _1{ 3 © h](l h )‘—312 +§y j’ fOI.‘ 85
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- oley L (¢, ), =8 (g, )
and . P A P B i S e +47
{ hs 2(1 ;I‘ gy ®
b1y
F—— for ¢;
2u(h—1)\w 3 ’
> 20
where CpT2 T cotf’?_;_;‘zf_ T gin™m%
n
0 20 20 el l—q w
' T !
By 472 = T ootn ™Y 2T " gy
£y + o 2w o0 20 ;l—qgns ! 0

2 oo 9
n_1(7\ ar q" o —
DAY E ey o

‘Whether the motion is retrograde or direct can not be decided at this

stage. It depends on the values of z and of y. If cot:g—z 1s negative
w

4
aw N . . .
and great and coth”¥ is also negative and great, then the motion is

@

evidently direct. It will be shown later in Chap. X that the sense of
the motion is always direct. The point of the maximum radius vector
always advances by a constant amount. TFig. 7. _

Let 40=2pm+v, where p is an integer, positive or zero, and v is a
positive number less than 27, then the particle performs p revolutions and
a fraction of one revolution before passing the same value of r again in
the same sense, especially for travelling from a perihelion to the im-
mediately following perihelion.” If #<»<2n, then it looks as though
the perihelion maintained a retrograde motion, but in reality it always
advances. As fy and hs so vary that ¥ e,—e; or 1/ e;—e; approaches to
unity, then the integer p tends to zero, because?

‘/Q_m‘{/a’__gzl—2q+2q“——2q9+ S
w

‘/2£V61—63:1+2g+2q4+299+ e,
-

with ¢<l. In this way, if p=0 and v is small enough, then the motion
is the one deduced by Einstein, Schwarzschild and de Sitter. Hence

1) The word “perihelion” is used in a generalised sense of that for the Newtonian
mechanies.
2) Halphen, loc. cit p. 265.
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this may be called a quasi-elliptic motion according to Whittaker.?
This type of motion corresponds to the ordinary Keplerian planetary
motion. (Fig. 7a.) This advance of the perihelion corresponds to the
secular motion of the perihelion in the_ordinary theory of perturbation

seTe.,
o .-
P T Ty

S e -

Fig. 7. Fig. 7a.
Quasi-Elliptic. Quasi-Elliptic.
2 <2m <3 <2027

in dynamical astronomy. In the Newtonian mechanics the radius vector
7 can not be represented by a simple harmonic motion, but the reciprocal
of the radius vector is so expressed. In this relativistic mechanics neither

1 . . . .
o nor — can be represented by a simple harmonic motion. The motion
T

either of 7 or of L is a simple harmonic motion, superposed by small
T

oscillations with short periods of the aliquote parts of the principal
periods, that is, superposed by a series of small oscillations proceeding

in the harmonic terms of the arguments “Z(Y'+8;), (n=1,2,8,....).
@

The coefficients of these successive terms, as we proceed further to the
higher order harmonics decrease in magnitude, as ¢<<1.

If 20 and = are in the ratio of an irrational number, then the ring
region r,=7=r; is covered by the trace of the moving particle everywhere

1) Morton called this type of motion general elliptic, but I adopt Whittaker’s
terminology. The term has some relation to the word “quasi-periodicity ’’ in the theory
of algebraic functions. Cf., H. F. Baker, An Introduction to the Theory of Multiply Pericdic
Functions (1907).
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densely.” This type of motion is called quasi-ergodic® in the recent

" terminology and it is stable in the sense of Poisson according to Poin-
caré.” Staude and later Charlier named this type of motion conditionally
pertodic® (bedingt periodisch), because, if that ratio in question is in
the ratio of a rational number, the motion is strictly periodic. In this
case the motion is said to be degenerated (entartet).

(b) 6< — L <o <<, a<z<len p>L.
3 3
Put Y=Y 12, y=y'+o' z=z ">,

. , .
Bo=R +38)", Ba=RB+164",
where 8/, 8/, Bs' and B’ are real constants, then
2
20chs ", 2o

% ,
Vhi—1 21, @r=— , ===
¢'y= +f ”‘ v I I

Wy gymfd 0 _2om S 0 nt Ty g)

hs o  ohVhi—141—q
sin - (Y + By) Smg(vf +6i +y)
7 2w PR o 20 2
7 Tz 7 /
? cosTY —cos T (Y + ) haVhs' =1 E(Y_;"_'BL _y!)
® 2w 20 2
. mT
{ wr, o sin —;y } .
— — ' — sin —({' ,
Z R MVRd—1  n 1— q" n (\lf )
2 1 7(2hs? HS q" . mr
————-(‘\t ., = ’——( “—'> i - =
ol LCo ’I‘B‘S ) { hg é‘z + (]22 1)3/. e 1__q‘n311’1 - Yy
hl ( /
+*___ ot
o men Gy U
Sin (‘V + Bl)
hrlT
Za(hg —1w cos 7ry

os (¢ 13
€08 =¥+

w

1) Geiger u. Scheel, Handbuch der Physik. Bd. 5, Kap. IV by Fues; Charlier,
Mechanik des Himmels. Bd. 1 (1902); Born, Vorlesungen tber Atommechanik, Bd. 1 (1925).
2) Levi-Civita, Abhandlungen d. Hamburger Math. Seminar. Bd. 6 (1928) 323.

3) Poincaré, Méthodes Nouvelles de la Mécanique Céleste. T. 3 (1899); Journ. de Math.
[iv] 1 (1885) 167 ; Hagihara, Japanese Journ. Astronomy and Geophysics. 5 (1927) 1. See,
Chap. VIII of the present paper.
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sin 2—(0(\& + 5 +y')

2hs—38 oo 2
3 n—z_ 32 t=l . - '
2(hs A 1) gin L(\P‘ + 5 _yr)
2w 2
. nTT
S (4" o 22N —8) . mm
_[_ — ® + 3 X r
;{ hs n (ha®—1)2 sin © Y
2ehig ol g g
+Dé(hgz—-1)w J‘l-—- Sln‘ ("lj‘ +61>7
1 n nr
__:__,_2( > 9 T ,
¢ 3 Z _ 82w<\# +8)
. Q(h% ”‘1 ’ 2 r
— __”¥B r— _2 ! “
o T TR
+ )—47m Z S 8in ——y'l ,
hdfhg 11w 0 £ f
2’5 14 4 ! hl ( ! 2 r)
—G === —y) | 29 — =
oy hg(“’ =Yt S D) 3"
213 (i, dme' 7 G0 o,
1 e YT, & i, y]l'

¢t becomes logarithmically infinite at (4). Two types of motion can
be imagined.

(e) —% <z=es.

(3]

8) egém<-——é—. This is impossible because 7<0.

The type (o) of the motion is asymptotic at r=00 and the domain

is from 7= ] to r=00. The geometrical trajectory in space has
62+‘é—
two distinet asymptotes :
Y=vo=—L—2y,
and V=.0=~ B +2y.

The moving particle approaches to the asymptote Y=V as t——o0 if
h32<%, and as {(— 4+ oo if hf)% ; and to the asymptote Yr=+4 as t—>—00

if h32>%, and as t—>+o0 if 7232<%. The angle between the two asymp-
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totes is 4y. If 4y=2pm+v, where p is a positive integer, positive or
zero, and » is a positive number less than 2w, then the particle
performs p complete revolutions and a fraction of one revolution during
those two asymptotic approaches. This type of motion can be called
quasi-hyperbolic. (Fig. 8 and Fig. 8a.) As the point e; approaches to

—%, the two asymptotes tend to coincide. If 63:——%,, the type of

Fig. 8. Fig. 8a.
Quasi-Hyperbolic. Quasi-Hyperbolic.
2m <4y < 3. <4y <2m.

motion may -be said to be quasi-parabolic. In the case of a quasi-
parabolic motion, we have y=o' and the axis of the quasi-parabola lies

in ¥+8=20". As e; crosses x:——%, the type changes into the quasi-
elliptic (ITa). These types of motion—quasi-elliptic, quasi-parabolic and
quasi-hyperbolic—are considered to be a generalisation of the Keplerian

types of motion in the Newtonian mechanies. If ¢; and e, coincide in
the type (Ib), then the type (I1la) comes in.
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En résumé, the various types of motion ccorrsponding to the various
cases of the distribution of the singularities are tabulated as follows :

Table V.
(o) O=r<oc: Inadmissible, Fig. 3;
da) (B) a<r=—2 1 Pseudo-elliptic, Fig. 4.
et+—
3
(o) O=r<e: Inadmissible, Fig. 3;
Ia) {(B) a<r=—% T Pseudo-elliptic, Fig. 4.
é +_3‘
(o) O=r<ee: : Inadmissible, Fig. 5;
(IIla) {(/3) a<lr<oo: Pseudo-hyperbolic, Fig. 6;
¢2] Impossible.
(o) 0=r<c: Inadmissible, Fig. 3;
(IVa) {(8) og<7'§—“—1, (k=1 or 3): Pseudo-elliptic, Fig. 4.
en+-5
3
lo) —Z —=r<oco: Quasi-hyperbolic, Fig. § and Fig. 8a.
(Ib) ot —
@ 3 Impossible.
(ITb) °‘1 = =% Quasi-elliptic, Fig. 7 and Fig. 7a.
oot et
3 3

The limits of r only with single inequality signs in this table are
those of the asymptotic approaches as the time passes to infinity. The
asymptotic character at r—=c is not geometrically asymptotic. In the case
of an asymptotic approach to infinity there exist two asymptotes for any
geometrical trajectory. If these two asymptotes coincide, the motion is

parabolic instead of hyperbolic, and such circumstances occur when
1 :

e3— ——.

3
The general feature of these kinds of motion was studied by

Charlier” in the general hyper-elliptic cases of the algebraic integrals®.
He classified two types of motion: libratory and limitatory. Our
type (IIb) belongs to the libratory motion of Charlier. The other types
in this Chapter belong to the limitatory.

1) Charlier, loc. cit.

2) Appell et Goursat, Théorie des Fonctions Algébraiques et de leurs Intégrales (1895);
H. F. Baker, Abel's Theorem and the Allied Theory; An Introduction to the Theory of
Multiply Periodic Functions. '
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Chapter VIII.
DecENERATE CASES.

Elliptic functions become degencrated when the discriminant of the
fundamental cubic reduces to zero, i. e., when one or both of the periods o

and 2 become infinite. The states of motion in such a case are discussed
%
in this Chapter.

We have the following formulae from the theory of the elliptic

functions :

(L),

(i) A=0, gs>0; then ez=¢;, —=00.
i
If we put e;=2a, (¢>0), then e;=e;=—a,
g2=12¢% g:=8d".

2
——})—61:62:63:—% (_'";) _9¢s_ —34.

2 ng, 2w 2¢-
YRS <7r 2 2
po=—3()+(5,)— .
1—cos—>

w

) 20 3\ 2w
= o8B 20 sin™%
T 2w
* 2
fom T om0 1(2 Yy
w0 20 3\ 2w
77'2
no="
12
S
vto)=—=( "},
@( + 3 2w ‘

Lwte)="0 1,
w

2
log ov="1""
& e

1) Appell et Lacour, Principes de la Théorie des Fonctions Elliptiques et Applica-
tions. p. 485; Halphen, Traité des Fonctions Fllzpnques et de leurs Applications. T. 1
pp. 27, 90, 145, 183.
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(i) A=0, ¢3<0, then e;=e¢3, w=00.
If we put e1=e:=a, (¢>0), then 3= —20,
g:,-::lgaz, g3~_——8a3, :
37s

T l=a=og= T

2 292
2(77'73 )2 (77'(,) 2 W
== = th* ==,
Y 3\ 2’ + 20’ 0 20 2

IRYEAY 4 W
gw——‘g(?&;’) w+( ’>Coth2—w(—,

’ . 1 {run
2w sinh ™Y , s G

= T %20 ’
1(77-7,) ( T
P== — +{ — Jcot R
¢ 3\ 20’ 2(0) 20’
2
Py
ERTY
2(77' ) <7ri>2 2 TTWT
( N __2( T T Y tanh
plta=—5(57)+ (5, 20’
n_1[m ™ Y,
v+ o)= §<“2—)'v+<—2;’»>tanh2—w,,
_nv
10g»agq)_§;—,.
(iili) A=0, g2=g¢;=0, then e1=es=e;=0.
!
=00, waOO
%
1
(@w:;z’
gw:%:
gw=w.
* !
V. In this case A=0, gy=¢s=0 and @=00, L =co. This is the

5
only case in which the three roots of the cubic coincide at one point.
It corresponds to the point of the cusp in Fig. 2. TFurther we have in
this case

-
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e1=e3=e3=0 7\_%, ,,(,:..%.
—Va _ g 2 o ; 2__80
y“—/bvg’ Z= 57 by _’:9;, hs ~a

We distinguish two cases according to the domain of the motion.

(Va) The motion occurs in the domain: e=r=00.

~ (s +go)__(¢+3)+M V3ta {M},

27 (\P+B1 112 (4 B1)*—12
V3 (ot 4 B0 = oo Y EBHVE
5 <00 +8s)= («!f+3)+ 6 8 w6
~11V§tan—1{ 4\/3('\’""‘8} }'*9. 11(f+/231 ,
(\#+Bl)2"12 (P+B 12

14
8 (¥R
Two types of motion can be imagined.
() O0=r<o: asymptotic and ejectional or asymptotic and collisional,
but inadmissible by the reason often stated in the last chapter.
Fig. 9a
(B) o<r<3a: asymptotic on both sides. The trajectory approaches
to the circle r =3c asymptotically, performing an infinite num-
ber of revolutions round the origin. Fig. 9b.

Consider (B) only. At :n:%, b, at r=co, Y+ B=yY6 or Y+Li=

—V6 according as t—>+oco or t— —00. - Hence the trajectory is described
from r=c, ¥+ Bi=—16 to r=3c with indefinitely increasing ¥, or from
r=_3c with indefinitely decreasing ¥ to r=c, ¥ +6:=76. As r—3e, the
angular velocity tends to

d\l/‘ ']/g Co

dt 13\/ 1350’
but never reduces to zero. Thus the rotation continues indefinitely as
the time passes to infinity. On the other hand as r—«, the angular
velocity tends to zero in such a way that

d Der VEL o
"”_} _2_‘06V5a(<:o+ﬁa)vas t—-)——OO,

di S5a
and
. T e :
%;ﬁ"”‘ %%G'V??m P2 as {400,
di
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. BN —_— -
Fig. 9a. Fig. 9b.
Inadmissible. Pseudo-Spiral.

As was explained in the last Chapter this point r=e is the place where
the spatial co-ordinates become standing still. Fig. 9b.

(Vb). The motion occurs in the domain: e;=zx=e,. But as e;=e¢;
the domain for z shrinks to a mere point e;=¢s=e;=0=x.

L (s48)=v+8,

9Y3 «
V3 —
. (cot + B5) =13(Y + By),

'll-—lzo,
3

This type of motion is circular with the radius r=38c«. The mean motion
Y3 ¢
13y5 o

This circle is the limiting circle to which the type of motion (Va)
tends as t——o0 and as {— 400, and is itself the trajectory of a possible
motion. The initial constants of the motion should exactly have the
numerical value corresponding to this type of motion. - If it differs by
the slightest amount, then the type of motion assumes the form (Va).
There is only one definite possible value for the radius of the circular
motion, while in the other cases such as (VIb) the radius of the circular
motion can have any value out of a continuous stretch just like in the
Keplerian circular motion in the Newtonian mechanics. Hence we dis-
tinguish this type of circular motion from the other types and name it
a pseudo-circuler motion.

of the angular variable is
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The characteristic feature of this asymptotic approach to r=3w« is
that the asymptotic behaviour is algebraic, while in the other cases it is
transcendental as will be shown later. Fig. 9c.

VI. This case of the distribution of the singularities corresponds
to the lower boundary curve in Fig. 2 between the region for the type
(IT) and the region for the type (IV). According to the domain of the
motion we distinguish two cases as usual.

(VI a)

2(hs’—1) (7Y _ 1« w Ty
ha <S+BO)%{3(‘2Q)) 3 hﬂ/lTh? QwCOt 20 }(‘]’-1-181)

" sin (4 +3)

4
® cosh™ — cos (Y + 6y)
2w

w

sinh Ty’ sin ™ (Y + 31) ‘
) 2w

.._h_i\,g ta -1
hﬂ 1— h;;

)
1—cosh™ 1 cos (Yo + 1)
1) 200

17 72 1 2’3 = coth y!

2o e VIhe 2hi—1) 2w % -

+ 2oc(h];—1) (%(%f'—%)}@”&) '
sin—w—(w+z)

2w 2

2
-&E(Gotﬂ—ﬁs):{—

0og
hs gin ™ ‘!’+ﬁ1_z>
20 2
. w
. o sing - (P +B)
2ct(hs’ — 1w

cosh o/ —cos " (Y + 3y)
® 20

sinh T o/sin ™
1 2}L32—8 ~1 . (O] y 2(0 (\!,—FBI) q

__VT;__hjz(hz_l)tan - - )
st 2 (hs 1 —cosh ™y cos (¥4 B1)
} @ 2w
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2 2 .
e L
@ P T—cos T (Y48
w

2
<—1> =3a.
20

The geometrical trajectory reaches its greatest distance from the
origin for Y+ 8= 2

where

T_ and comes to the origin for ¥+B;=0 or ——.
V8a V3a
~ This geometrical trajectory is divided by the circle r=e into two parts.

Fig. 9c. Fig. 10.
Pseudo-Circular. Circular.

The moving particle can not cross over this circle. The azimuthal angles
of the points of intersection of r—=o with the geometrical trajectory are
Y+ B1= +22. The moving particle approaches asymptotically to r=e,
Y+ B81=2z as {—>—00 and to r=c;, Y+ B1=—22 as t—>+o0c0. The general
character of the motion is similar to that in (ITa), but the small oscil-
lations of short periods in that type die out as the two roots e, and es
tend to coincide. This type is the linkage between (IIa) and (IVa).

() — %—< —a<2a <§ <g: Inadmissible. Fig. 3.
(B) —-% <—a<2a<2< % : Pseudo-elliptic. Fig. 4.
(VI b)

2(hs*—1) n_(1 1 1)”_~_°6_1 Y |
I (‘9+B°)—{3 3(2(0 hIVL_h;‘szOthﬁg}w 6,
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2 ' _( Tz 1 2h—3 7y
2 (et + B ot ——coth =
o, Lot + )= thw % V1T 20i—120 " %

o G- Dl

with

= —00, _
2
ar
<A—) =3a.
20
This is an ordinary circular motion. Fig. 10. The mean motion

in the argument of latitude ' is % divided by the factor of (Y'+8;)
mhs

in the second equation. This is the degenerate case of the type (Ilb)
and it corresponds to the Keplerian circular motion. This case is the
only linkage between the relativistic and the Newtonian trajectories. Asg
the two roots e; and e; separate, a quasi-elliptic motion with small
eccentricity, so to speak, will appear and gradually changes into (I1b),
if we adopt the relativistic mechanics; and an elliptic motion appears,
if we adopt the Newtonian. :

VIL _%<el<egze3>§
This corresponds to the upper boundary curve between the region
for the cases (IT) and the region for (IV). This case of the distribution
is the linkage between the latter two cases when the two roots ¢, and
es of the fundamental cubic tend to coincide. As was already stated,
we have
er=e3=a, e3= —2a,

( T4 ) —30.
20’
We distinguish two sub-cases:

(VII a) 1<z < +00.

2(hs’'—1) 1 1(mi o L 77'7,7/
. <+/e(>_{§ ! 2w,) — o Moot }(«:»m)
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sinhl’i,(w&)

T
, 3
® cosrﬂ}i Cos
CD'
. 77'?: 7o 7T?:
o . sm—,y smh—,(\[f-l-,&) '
—————tan
C hViI—hs ) ’

1-— cos* y cosh—(\]r—h&

—= —coth — — ?',y

he20' 20" V1—hs 2hs—1) P 20)
+ 204(75;—1) (%('2%) - ’3") e

sinhgl%wwo

E‘(Cot-l"/@s): { L mi e 1 2hs’—3 '77"0 T
Oth

hﬂl‘?'/
20(hsi =1’

cos ™Y _ cosh T (P +By)
o' 20’

sin hﬂ(‘l’-l-,@; : z)

L1 g 20'\ 2
hs inh 7 ('4"4—61 )
_ —Z2
20"\ 2
™ h—
1 %2 —83 tan- in y o0 )
VI—hs® 2(hs*~1) tl y cosh—(‘V'H@l

1 2(77”{)2 ( 2 T
—==-212=) + th B,).
YT e\ 0y 00/ (‘H &

The motion is devoid of small oscillations of short periods which
‘appeared in the non-degenerate cases. The principal feature is the

asymptotic approach to the circle r= with an infinite number of

,g-i—a

revolutions round the origin. In fact, c.o‘uh2 a

(Y +B)—+1as oo,

Hence the limiting value of u—% is 0/:61:622é-(7r0')- Thus the

2w
moving particle approaches doubly asymptotically to the circle r=—%

1
f_l_a
3
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describing a spiral orbit both as t—-+c0 and as {——00. The geomet-
rical trajectory of this case is an example of doubly asymptotic orbits
of Poincaré,” if we consider the central body as a mathematical point.
Actually it is ejectional and asymptotic. But the dynamical trajectory
is cut by the circle r=o and the moving particle can not cross over
this barrier. At r=o the geometrical trajectory is not asymptotic. The

motion is asymptotic to r=e, ¥ +B8=—2z for t—>+00, and to r=e, .
Y+B,=2 for t—>—00. This circle r=ca divides the types of motion
into two: :

(o) §<x<oo : Inadmissible.

This motion, if existed, would be either ejectional from =0 and
asymptotic to r=e, or asymptotic from r=e« and collisional to r=0.
Fig. 9a.

(:8) 61<£U<—2— :

The asymptotic approach to w:%, 4. €., r=o, ¥+ By= + 2z, s0 oceurs

that the velocity tends to zero, but the asymptotic approach to i=e=a
occurs in such a way that the trajectory, both dynamical and geomet-
rical, winds round and round describing a spiral orbit as it approaches
to the circle with a non-vanishing angular velocity. However this

asymptotic approach to 7= 1 in this case is different from that in
5t

K . 3}

the case (Va 8), although the appearance is very similar. The approach
in (VIIa @) is exponential, while that in (Va B3)is algebraic, that is, =
admits ¥=00 as a transcendental singularity in (VIIa 8} but in (Va 58)
it is a double pole. Hence the type of motion of this case (VIIa 8) may
be called {ranscendentally pseudo-spiral, while the type in (Va 8) alge-
braically pseudo-spiral. In spite of this difference we demonstrate it
by the same figure. Fig. 9.

(VII b) 63 << ea.

2(Nhy'—1) X { 1 1 ( i, )2 o ™ Cotvri'z/’}
—t § =] ———— —} - — RN -+ ﬂ ,
I (-+4) 3 3\2 InV1 — hs’ 20’ 20’ S

2 ' 1 7 e, iz 1 Ohs—3 i 1y
= (et + By ={-———coth——- e i —_ cot —
oths (@ ") hs 20’ 20" V1-—nha2(hi—1) 20 20’

1) H. Poincaré, Méthodes Nouvelles de la Mécanique Céleste, T. 3.
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*ie (5() ~5)j A

1 2(77‘?:)2 (7T1:>2 s Y
W —— = ——\— — | e h o ,8 ’
" 3 3\ 20’ + 20 an 40’ b+
B'=—-o00, B5==—00.

The type of motion is one of the most interesting in the relativistic

mechanics. The motion is doubly asymptotic to the same circle 7=
l+a

3
performing an infinite number of revolutions round the origin in the
form of a spiral, both as t—>+o00 and as ¢——oo. This is a typical

example of Poincaré’s doubly asymptotic orbits®. In fact, as ¥+58,=0,

< *\2
then u_l::__;)(ﬂ)’ . €., r= ® . As ¥+ B;— £ 00, then u.—i—->
3 3 \20’ 1_, 3
3~

e\ 2
—L(ﬂ\, G €.y >, Obviously the value of % taken from the
-t 0

second equation does not vanish at t—+oc. Hence the motion starts

from q*:l asymptotically for ¢——oo and reaches the maximum
_+a,
3
!
- distance r= from the origin at t=— =% and approaches back to
——2a Co
3

r =

asymptotically for ¢— 400, performing an infinite number of

_+a
3

revolutions round the origin. Fig. 11.
Another interesting feature of this type of motion is that the circle

P ==

. is a typical example of the cycles limites of Poincaré. The
§+CI,

two types of motion (VI a 8) and (VII b) both approach to this circle

asymptotically from both sides, each performing an infinite number of

revolutions round the centre. This is what I have mentioned in the

case (II). Fig. 11la.

1) H. Poincaré, Méthodes Nouvelles de la Mécanique Céleste. T. 3 (1899) Chap.
XXXIII
2) H. Poincaré, Journ. de Math. (iii] 8 (1882) 251.
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Fig. 11a.
Cycle Limite.

These two types of motion, which tend to the cycle limite from
both sides, are each consisted of an infinite number of individual mo-
tions corresponding to an infinite number of values of the constants of
integration in the continuous stretches of their domain of possible values.
Hence a swarm of particles must be found scattering over on both sides

, in a similar manner found

of the circumference of this circle r=

= t+a
3

in Saturn’s ring or in the asteroidal ring in our Solar System. But, as
>0, the radius of this circle lies between o and 38, and is of the
order of magnitude of «. Thus it is improbable for such an interesting
specimen of dynamics actually to exist in Nature by the reason often
quoted in Chapter VI. Also in the type of motion (V) there ought to
be a swarm of particles along the circumference of the circle r=3c in
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Fig. 11. Fig. 12.
Quasi-Elliptic Spiral. ' Quasi-Hyperbolic Spiral.
(Doubly Asymptotic).

a similar way but only on one side r<3e«. This is also physically im-
probable by the same reason.
The type of motion (VIIb) may be called quasi-elliptic spiral.

Especially, if e;=—2a= e—;)—, then the type of motion is asymptotic at
the point 7=200 and may be called quasi-parabolic spiral. In this case

e1—=e6s=0G 1
1=6=0="—.
6

VIIIL. 0 — L <o o< 2.
3 3

This case is the linkage between the cases (I) and (III) and cor-
responds to the boundary curve in Fig. 2 between the region for the

case (I) and the region for (III). .
(VIIT a). e << 0o,
2(h* —1) {l_l(ﬂ e (T oot T
1 (5+) = 3 3 2w’> hﬂ/ksz—l( 2(:)')00 Zw’y}(\lb‘-lgl)
Slnh (‘1’ + 51)
T

[
® cosh™ ™ “y' — cos h == (\l/ +51)
(0
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sinh 2(0,(\!’4'61 y)

o 2
i1 10g . ’
hﬂ/hg — sinh T (\b‘ + ,81__y>
' 2

2 : 1/ 7 k! 1 2hs’—3 s T
——(Cut—!—ﬁ ): { ——(*-7A>C0th—2 -+~ Gl oth
ohy : V=12 —1) 20/ 20’0

it (s (a) —5)} 008

sinh 1,”‘, (¥ +By)
20

ham K3
20t (}132-— 1) (1)' )

cosh 7—7-—% y—cosh L’b, (r+8)
® 20
sinh é% (M + z)

1 2
+— log -
b sinh Wﬂ(“MﬁB] z)
20’ 2

qinh 7L i (ll’_“;@ )
1 opees, MUy Y
7 2 4 S
Vhi—12(h—1) sinh ;rz ('\!’j'Bl ’y>
15} 2

1 2 ( i )2 <'rr® ) 2 7
b——=—— 212} ¢ coth B
37 3\20/ "\2u o VR

The type of motion is asymptotic at g=a=ci=es 0.6, r=—0 ),

1
- T
3

- performing an infinite number of revolutions round the origin. Also
it is asymptotic, not geometrically but only dynamically, to the point
of intersection of the geometrical trajectory with the circle r=c. The
general feature of the motion is quite similar to that of (VII a).

There are two types of motion which can be imagined.

() O0<r<e: Inadmissible. Fig. 9a.
B alr< l—oﬁw :  Transcendentally pseudo-spiral. Fig. 9b.
ER
(VIIIb) es < <es.

2(h32——1) ’ 1 1 7T’b )2 ol /‘71'7/ ’
-}t __ = th~—«
" (s+8) { 573 ( o0 i T\20 >co Y }(‘1’ +8)
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sinh ™ (47 1 8,)
_m 20
@ ooshjiy' —cosh ™% (Y + B8y)
® 20"
sin Li(‘k———-l- B, + y')
o 20! 2
+ - —===log o ’
luyhs —1 gin - <"l’ +85: —)
20’ 2

2 N 1/ 7 Tz 1 202 —8 i T
= (et + ’()—_—{—ﬁ< >00th . o coth !
(et + ' %’ | Yhe—12(hi—1) 20’ %2

o (ZZL 1)(%< ;TD_;)}W A
sinh L (47 + )

71177' % 2

2 o by )
20 (ks —1) ® coshﬂ — coshw—?’,(‘l" +£51)
© 20

sinh 74 (VS +y’)

PR UL I AN
Vid =120 1) " sinh 70 (V' By ) |
2w’ 2

1 2 ( i >2 ( e )2 Y
——= == —Z Jtanh*~2( ),
v 3 3 ( 20’ * 20’ At 4w'ﬂl[ +6s

B =—00, B=—0c0.

The type of motion at r= is quite similar to that of (VIIb).

§-f—av/

But this type of motion extends to infinity, and indeed has the charac-
ter of an asymptotic approach to r=o0. The asymptotes to which the
motion tends at infinity are determined by ¥’ + 8/ = +2y". If 2h"—3>0,
the moving particle tends to ¥ + 8,/ =2y as t—+ o0 and to ¥ + By = —2¢/
as t——o0. If 2h"—-8<C0, it tends to ¥ +8/=2y as {—>—o0 and to

Y +B/=—2y as {(—+00. The motion either starts from one of the
asymptotes from infinity and approaches to the circle r= —% | per-
- Ta
3

forming an infinite number of revolutions as the time tends to infinity,
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Fig. 12a. Cycle Limite.

or starts from the circle r=

, performing an infinite number of

- ta
3

revolutions from an infinitely long past and approaches to one of the
asymptotes indefinitely to infinity as the time passes to infinity. Fig. 12.

® _is a cycle limite of Poincaré. TFig 12a.
Zta
3

The circle r=

This type of motion may be called quasi-hyperbolic spiral. Es-

pecially if e¢; coincides with —«—1-, then the motion may be said to be
D}
quast-parabolic spiral. Thus the type of motion may be changed into

quasi-elliptic spiral (VIIb) as e; crosses over x:—-}; towards z=0.
(3]
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Chapter VIII.

CORRELATION BETWEEN VaRrious Typrs or MorioN.

How are the various types of motion correlated to each other ?
How do they vary as the constants of integration change continuously ?
In order to answer this question we reproduce our I'ig. 2 here and
enlarge it in Fig. 13 regardless of the scale of measure. Various parts
of the domain are named as shown in Fig. 13. (I) (II) (III) IV) (V)
(VI) (VII) (VIII) are those already treated in Chap. VI and Chap. VII.

L W
! f
< X
: A
R e Sl Rk R s
Y :
A=d : i ' !
R R oo B N R e Lt
! S ! i
o AR T+ I
1 ]
b il NNV
A : : N\ 71
' i i
U S SUUREI L W P
| : o\ 2z
1 ' ' !
o |
' 1 ' !
0 Lo 5 A I vz
i - pass paYS AL V)
oF ~
) I
\slm [N
Fig. 15.
IX) =1, o<>\<—i-.

Boundary between (I) and (Il) and e; has a special value —-é, that
is, Y=o A
(IXa): Pseudo-elliptic,
(IXb): Quasi-parabolic, as already treated in (V).

(X) p=1, %<7\<oo.
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Boundary between (III) and (IV) and e; has a special value —%.

(3}

Pseudo-parabolic.

XI) A=0, 1<pu<oo.
61:%, 62263:—%, A =0,

This may be considered as the limiting case of (I). The real domains

(Ia) and (Ib) shrink to mere points, —%— and —-%, respectively.
€ o

! . . . 2 2(
As ® —00 in this case, m—= 2w, zzz, Y =100, eI:ﬁ:@z:—(—>.

% 2 3 3 \2w
The type of motion (XlIa) is a standing still at r=c, Y+ Bi=m, as
a¥ o
dt

The type of motion \XIb) is also a standing still at r=0c0, ¥+8 =
any value.

(XII) A=0, 0<p<1.

The circumstance is similar to (XI).

2
3

ez and e; are complex and can have any values.
This is the limting case of (IV) in which ¢, tends to —g— In the

type of motion corresponding to the upper part in the right hand corner
of the domain (IV) it is proper to consider the only real root to be e¢,.
Hence the type of motion is a standing still at r=o, ¥ +B=7.

1

(XIV) K:Z, p=1.

This type of motion is the junction of four types (I) (II) (III) and
(IV). This may be considered as the limiting case of (VII) in which

¢s tends to ——;—. The type of motion (XIVb) may be called quasi-
parabolic spiral, while the type (XIVag)ispseudo-spiral just like (VIIag).

ol ol

- The type (XIVac) is inadmissible. The circle r= = is

cH—éf cﬁ—%
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a cycle limite. This case is the linkage between (VII) and (VIII),
and also the linkage between (IX) and (X).

(XV) a=0, w=1.

This is the limit of (VI) in which e;=es tends to —% and ¢, tends

to —g— at the same time. The nature of the motion is similar to (XI).

(XVI) A=0, = 0%0.
This is the limit of (XT). The limit of (VIII) is o=es= % o3=
—%. There is always a domain (I) between these two types (XI) and
£ 2
-5 o T Ea © 3 ’
) I ]
[ —= ——— = i 5
R i £ ! '
“ o LT | XI g : : ;
1 P em—— ) —— S ' .
N—— _../' N—._———w 1
A X ! ; :
! ! ! : g
el " 1 1 1 S
= ; = XW et
e s 7' ] ? RS :
W STm T ] XV S
T — : 1 t
V R/Ji‘e:*e_, i t : "
1 | ! ] €
o——— == R
Vi &=g! ﬁl t : G
/’"{N S R— : : K
[
VI Heﬁe,, ! ‘ !
- : — L/———’ Fig. 14. conti.
U ejh 1 €,=|le,_
P N S
K o
X ‘?3 i i
. { 1
X 2 ; ] :
4=e, { ; *
Fig. 14
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(VIII) even at p—>00.
(XVII) A=0, u=0.

The circamstance is similar to (XII).

A rough idea of the real domains and of the types of motion in
the various cases can be obtained from Fig. 14.

The correlation between these various types of motion can be best
sought for in Fig. 18. If we draw a curve showing the manner in
which we vary the constants of integration, then the types of motion
corresponding to the various domains of the figure through which the
curve passes are those which we are seeking. I think that there is
hardly any need of explaining it in detail. The use of Fig. 14 together
with Fig. 18 is quite sufficient for that purpose.

But what is the physical meaning of the constants of integration
A and p which we so often refer to?

By our construction

062

I’
where m denotes the mass of the central body at the origin measured
in the unit of length. If « increases from zero, A increases. For large
values of A the type of motion is either (IV) or (III), that is, pseudo-
hyperbolic, or pseudo-parabolic, or pseudo-elliptic. (See Fig. 13 or Fig.
2.) Tt can be imagined that the large mass would attract the particle
so immensely that it soon comes to the nearest approach to the centre
and tends to stand still on the circle r=ca. This is what the actual
circumstance is. u contains . But it is only to change the scale of
meagure and the type of motion for any value of o can be obtained by a
similarity transformation from the type of motion for another value of c.

As to the physical meaning of hs and I, it is not so simple as to
attribute any concrete idea to them, except in the case of a quasi-
elliptic planetary orbit. (Chap. X.)

Suppose that o is kept constant. Then the same relative correla-
tion between various types of motion, as that for increasing values of
oo with constant hi, is also valid for decreasing values of h; with cons-
tant «. The values of o are related to the absolute position of the sin-
gularities of the elliptic integrals. Thus « and h are mixed together
in exhibiting themselves in the physical nature of our problem. For
very small values of o or for very large values of /s, the type of motion

,lL:hgz, and oc-_—2m,
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approaches either to the type (XI), or to (XII), or to (XV), or to (XVI),

7 ,
or to (XVII). These are the cases in which £ is infinitely great and
7

QL is nearly equal to unity. In fact, as was shown in the case (IIb)
[0}

in Chap. VI by referring to the formulae:
‘/27“’%/61—62 =1—2¢"+2¢"— .. ..,

‘/ o ‘i/el——e‘g :1+2q2+2fi4+ ey

w

29 tonds to unity, as e;—es or ei—es tends to unity. But e, ought to
™

lie between 0 and —?)— Hence e;—e; or e;—e; can tend to unity only if
es and e; both tend to ——é— and at the same time ¢; tends to %

. . T
This case corresponds to the above mentioned five types. Hence —
@

is equal to unity for those types of motion.

In order to find out the physical meaning of the constants of
integration h;, we form the Newtonian kinetic energy of the moving
particle at infinity, when it is actually or virtually brought to an in-
finite distance from the origin of the co-ordinates. As the motion occurs
on one plane during the whole time, the Newtonian kinetic energy is

2 2
<@> +7‘2(ﬂ). By transforming this we get

dt dt
Y, AV (B o0
(dt)_!-lr(dt) [d'u, 1@2+"..o4 dt /-~

From (49) this is equal to

2, 2 2 27 2

b % (1—w)?Ulw) [us —ut+ Tt ohs'—1) . Dy ocz] .
hg hi N

At an infinite distance from the origin %—0, and hence the Newtonian

064(]?/32 — 1)0{»2

] 032

kinetic energy at infinity is At R =00 this expression

has the value 1. As hs* decreases from infinity to 1, this expression
decreases from 1 to 0, and then, as hs® decreases to zero, the Newtonian
kinetic energy at infinity, keeping its negative value, decreases to —oo.

We have put =2 p=1 divides the types of motion from the
elliptic to the hyperbolic, both for the quasi- and the pseudo- types. Hence,
if the Newtonian kinetic energy at infinity is positive, then the types
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of motion are hyperbolic; and if itis negative, then the types are ellip-
tic. Particularly, if it is zero, then the types of motion are parabolic,
and 1f it is negatively infinite, then the types of motion are those for
the light rays, as will be shown in Chap. IX. This -circumstance
beautifully corresponds to the Keplerian motion in the Newtonian
mechanics.

It is very remarkable that the actually existing planets in the
Solar System have their trajectories of the type (IIb) but very near to
(XV), corresponding to the parts for small values of o in Fig. 13.

This circumstance shows that for the actually existing planets the
kinetic energy at infinity is negative, and, besides, the mass of the Sun
is very small. It is vaguely imagined that these two facts correspond
to a nearly stable end-state from an analogous consideration to the one
in the statistical mechanics. But it is not a place to talk on such a
cosmological problem here.

Chapter IX.

Traszcrory orF Ao Ligar Ravy.

In Chap. IIT we have obtained the result that for the trajectory of
a light ray we should take K=0 in the equation (59):

2, 2
Ul =P —u®+ 2 Ke? wt® (h*—2K)

h® ht
that is, if we denote the expression U(w) for a light ray by U(w), we
should consider the equation :
Uil =’ — +‘l“k”—*

1

For the trajectory of a moving particle this expression was reduced to
o(hy'—1)
h,*
In Chap. V we have transformed this into :
Ulu)=v’— v +Au =21 —p),

by putting
2
o

]Zzy
The assumption that K=0 is equivalent to taking

A= u=h

7\:0, =00,
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but such that

. 062h32

b
%

in our discussion for the trajectories of massless particles.

Let us turn to Fig. 13. The domain A=0, p=oc is for the type
(ITI) or (I) or (VIII) or (XVI). In order to decide to which domain
the type of motion of a light ray belongs, we examine the behaviour of

Oﬂzhaz

’
h12

A

the curve Ap= relative to the boundary curve A=0. The branch

in question of the boundary curve is given by

:%{(97\+1)+V—(3>\—1)3 }
27A
o*hs? . .
For the curve au=="-, the ordinate u' is given by
1
y_OC2h32
7\}L12.
2 g 1 ?
As — ’:——«{ M+ D +V—Br-1 "}——-oa“’i,
e e
behaves in the limit A—0 as
I Y 'y
2T A R
so, according as
i_oﬁihgggo
27 it =
’ 27, 2
the curve 7\,{1:9‘—}% is situated above, or on, or below the boundary

hl
curve A=0. Hence the boundary curve A=0 is in the domain (ITI)

or (VIII) or (I), according as
isazhaz
27= ht’

in the

27 2
The trajectory of a light ray, as it lies on this curve ?\p,:ah:
1

part A—0, is of the type (III) or (VIII) or (I), according as
é_ é&izhsz
21> m* A
In this case we have the following relations:

g2:%’ 3:4(2__06'162 )’
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40hs’
=5 0y=0,
2
@'2Z=4O;L};/S :@’2@/

To take =0 is equivalent to assuming that h;=0. Hence we get
s+Bo=0 in (68). Thus the proper time or the co-ordinate time is
always zero. This result is quite in accord with the principle of rela-
tivity.

Corresponding to the type of motion (Ia) there is a trajectory, which,
starting from a point with the radius vector r—=c, goes back to another
point with the same value of the radius vector, without receding farther

than ,,-:%2‘ from the center. If the radius of the central star is

o< fr<%oc, then some light rays emitted by the atoms on the surface

of the star can not entirely leave its neighbourhood but strikes the
surface again in a finite interval of time. Even if the type is (VIIIa),
the circle of its asymptotic approach is of the radius 20<r<3«. Hence
for a physically existing star it is highly improbable by the reason
already given in Chap. VI, that an observer lying outside a very massive
star can not see the star at all because of the impossibility of the escape
of light rays from its neighbourhood, a fact often cited in some of the
treatises on relativity. Thus the light rays emitted by the atoms on the
surface of a star always reaches to infinity and there exist always some
light rays coming from infinity which strike the surface of any star.
Hence, if we neglect the cosmological term in the general theory of
relativity as is assumed in this paper, then we have the result that an
observer in any part of the space can see every star which is duly
thought to be existing by physical consideration on the possible density
of the stars, however massive the star may be.

As in the motion of a particle, a light ray comes to a standing
still on the circle r=«. But this is practically improbable by the same
reason as in the case of the motion of a particle.
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Chapter X.

Quasr-Errreric MOTION.

1. Let us confine our attention to the important case (1Ib), Whlch
contains the ordinary planetary motions.
By (52) and (56) we have

. 062] 13 dx

o hlco(%~ xxﬂ _i_%)zy/(x_ e)(@—eo)(w— 63),

(80)
dx f
0= = oY
Viz —en)(z —e2) (x—es) o
dz @ B
Put : —— = —dy, =dws,
" V(ﬁ?—ﬁ)(m—ez)(ﬁ’—%) de " k }

r=q, Y=gy
as a slightly more general form than that of Charlier” and further put
di= Fu(gl)d’blh + Flz(QZ)d’LUZ; }
0= le(ql)dwl + FZZ(QZ)(Z'LU%

: 2
where Fu= et hy 1 o

hac, { 2 1 Fe=0
(o 2)
g T N\Bt
'2123"7 o Fa=—1.
m

The matrix of half-periods :
ou= [ Figddw, (i,j=1,2)
0

is calculated to be

with .
2chae [ 1 ( nz) 1 Q;L;._g(; S )}
= = (- = (y' +-—"y' )V=Q, say,
“n ]IACU { ]’.g @ Vl——thQ(hgz-—l) 4 a)J Y
wn =20,
w2 — — T

1) Charlier, Mechanik des Himmels. Bd. 1.
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Construct W(t—l—&):wull-{-wmlm }
Co
w1 =wnl, + wxl:;
or l:lﬁ(t.}.@), 55:2_“3@ _@i)
1 9 o 2 ) + o ;
or Li=nmt4+ oy, la=mnat + s,
with ny=-, nz:%,
Q Q
B 208 D
:71‘ 8 :‘ 033
- Qe i Qe +
Q depends on h and ks as arbitrary constants.
Then the solution ¢; and ¢z can be written in the form :
Q= 2 2 Clhnc™mV T (j=1,2)
v1=—-°°v2="—0°" B (82)
with w20, = f f gy, T~ e Y1y gy
0 0
(§=1,2; vy, v3=—00, .. .., +00)

Further by (45) and (48) we obtain the values of the co-ordinates :

_r: radius vector,
Yr: argument of latitude,
@: co-latitude,
6 : longitude,
by the formulae:
T 3
Y =qs, (83)

cos p=sin [ sin ,
tan (04 Bs) =tan ¥ cos I.

The arbitrary constants are hi, h, hs, B1, B2 Bs.
D, 78 (j=1,2; v, vy=—00, .. .., +00) depend on N and k.
B, hg, B and B determine the form of the orbit, while h. and 8.
determine the position of the plane of the orbit on the plane of reference.
The expression (82) are in the form often employed in atomic
physics. If » and v, are connected by a linear homogeneous relation
with rational coefficients, then the motion is said to be degenerated

2m 1 _

=y, )
L
i
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(enfartet).” Otherwise the representative point of the motion in the
plane of r and Y covers the manifold I, everywlhere demsely. This
case is called guasi-ergodic.® Thus generally the periods of 7 and of
Y do not coincide and hence the motion of the perihelion occurs. The
perihelion advances by the amount:

(40)_277_);1‘(0:4@(2_@__1)

™ ™
in an anomalistic revolution, that is, for one complete period of ».

2. As was proved already, we have. 20 >1 in this case. Hence
mw

the point of the maximum radius vector and the minimum radius
vector, or in short, the aphelion and the perihelion, advance in the
sense of the motion of the particle. If 40=2pw+», where p is an
integer and v is a constant less than 2w, then the perihelion performs
p revolutions and a fraction of one revolution in one period of =, that
is, in a time interval between subsequent two epochs in which the
radius vector passes its initial value in the same sense. » is the apparent
advance of the perihelion. If w<y<2w7, then it looks as though the

‘perihelion were in a retrograde motion. As e; and ¢; approach to each

other, the orbit tends to be circular as was shown in Chap. VII.
From the theory of elliptic functions we get®

2w>2 2 LN ng™ \
20) ey — 2 =16 ,
(77_ e 3 Zl_qm

20\’ 1 pl—q)* n=1,8,5,....

™ +(—q)”
Qw)z 1 pq”
2 eyt L= 16> LY
(77. és+ 3 Z _qzo
in which g=e .

!
As 200, then ¢—0 and
%

1) Geiger u. Scheel, Handbuch der Physik. Bd. 5 Kap. IV ; Charlier, Mechanik des
Himmels. Bd. 1; Born, Vorlesungen @ber Atommechanik.

2) T. Levi-Civita, Abhandlungen Hamburg Math. Seminar. Bd. 6 (1928) 323.

3) Halphen, loc. cit. p. 447.
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1(77‘)2
by > ——\ — .
3 20

The amount of the advance of the perihelion keeps the same value ag
!

[0} . . A e B . . . .
we vary — into infinity and it has the same value also in the limit
%

® 500, Tt is remarked that -2 and - both tend to —-'—;, whatever
v €1 61

the value of -~ may be.
2w

Now the solution for the relativistic trajectories has four constants
of integration, namely, hi, hs, 85, 85, or \, g, 81, B:. If we restrict our
attention only to the form of the trajectories, then B and B; do not
enter into our discussion, for they are only to shift the zero-point of
the longitude and that of the time. A and w enter in the fundamental
cubic equation which has played an important rdole in the above
investigation ; that is, in the equation :

W —uf A —A(1—p) =0,

or 42 —gx —g3=0
1 2 2
where :4(__7\), .:4(_ il Y >’
g2 3 gs 27+ 3 ©m

€i+eate;=0, eeateesteser=— <%)’ —7\>7

€16 ———-2+2\ A
€3 == =\ —
e 27 38 #

A= —647\{7\2+<2~9p+%;p2)?\—!—(1—#)].

We can transform our independent arbitrary constants A and p into e

4
w .
and —, connected by the relations :
7

o = ¢y, g)w':eg.
Or, by putting

4
Z__:'l/el‘—eg —Ve, —éz
Ve —e+1V e—en

1 1,V BN
h=Ly 2(4 15<_)
S+2( V+ L)+

)

the relations take the form :*

1) Weierstrass-Schwarz, Formeln wund Lehrsitze zum Gebrauche der elliptischen.

Functionen (1893) 61.
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20 _ 2 16
. (12RO ),
]/'77' 1/91——6';-]‘-1/?1—”2( ' )
o' 1
,‘_—:-_1 gy — 1 r
% T Ob(\h> (85)
%)S K Tz 2 -
/22 2= A1 -8R +5h — .. ).
‘/77"/2 20 ( ? )

These are rather complicated and it is hard to write down any
simple formulae for this transformation. Especially the condition for
a double root A=0 is quite beyond our control.”

3. Suppose that in this way we have chan@ed the independent

Cl)
arbltrary constants of integration from A,u to ®,~—. From an o0®
%

number of these solutions, we choose out an o' of them such that

!
w

—=00. These latter solutions correspond to the circular trajectories.
i ;

Now the radius of the circular orbits are computed by

o 3e

a=— =y (86)
ord ()

02 - —
3 20

o is twice the mass of the central body measured iu the unit of

length. From our discussion in the case (VIb) Chap. VII, we get the
sidereal period of these circular motions to be

” ! ‘ ! ! 2
,b:zﬁ[zw_cot&_,@;i(l_@%y)ﬂzmgi_ Pz (1_(1_) )J
¢ L 2w 20 @'y "y’ 2w Yo 3py 20

@, ¢ and @' contain w. ¥ and z are determined by the relations:
BEX Y

Hence by the formulae in the beginning of Chap. VII, we get
' 24 < T >2 T\
- W)

Py Sy;s{ %0 } o)

! 2 { ( m )2}‘/ a \?
e=——J21 () 1/2_2 .__)

@ 31/3 2w 2w ’

1) The relation may be obtained from

ﬂz_ N, 3 nl
( 20 15 I2Z§(2ﬂ)qn } n,1=1,2,3

Zr
( ; %—?7“1234 2 2\ enygn

Still it is complicated and I omit to copy them here. Cf, Halplien, loc. cit. p. 446.
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ou=g{r (L) -(2)}

Thus

qv[):f;lmwo‘_ _ 1 = (87)

in this expression, we get a relation containing @, and 7, with o or m :
+ t=]
772 _ 8’/T za(\g
0O — 75 .
el
This is the generalised Kepler’s third law.
g 1%
Suppose that

( L (88)

20

where v is a small quantity of the order of magnitude ﬁoﬁ—, then
0

Tozmai -+

coyY
An approximate value of v can be obtained from this equation.
Thus - 24:72302
V=
Co Lo

Now the motion of the perihelion is

4w(gﬂ —~ 1)':%(4,* 1)2:77-7;

T V1—vy

in one anomalistic revolution. By inserting the above value for v we
get an approximate value of the advance of the perihelion to be
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24ma,’

L 2mz2?
Co Lo

(89)

which is in good agreement with Einstein’s formula, when the eccen-
tricity of the orbit is neglected.
More generally, if (86) is substituted in (87), we get

Ty= 276 A ___l_o_g (90)
¢o Jl_(_vr_ ‘g
[ Q2w / {

This is the generalised formula of (89) and gives the advance of the

perihelion 4w{ 20 —1}.

e
Supposing that there is a planet close to the surface of the companion

of Sirius, its period of revolution is computed to be several minutes and
the advance of its perihelion to be a few seconds of arc. The perihelion
performs a complete revolution in not less than a century. This is the case
of the greatest deviation of the relativistic mechanics from the Newtonian
that may be realised in the physical world. Hence these formulae of
ours are unfortunately quite of little use for practical purpose.

This type of circular motion exists in the interval —%< <0, 4.
(3]

€., S3u<r<0o, as our discussion in the last Chapters shows. Hence the
radius of the circular orbits must lie between 0o and 3. If the radius
of the orbit is equal to 8e, or six times the mass of the central body
measured in the unit of length, the circular orbit reduces to a pseudo-circuler
motion (Vb), which corresponds to the case of three equal roots of the

fundamental cubic. =22 is infinitely great in this case. As the radius
w

grows greater, the value of 20 becomes smaller and the amount of the
i

advance of the perihelion decreases. At the same time the value of the
integer p in the formula 4w=2pm+v comes nearer to unity. The re-
presentative point of the motion in Fig. 13 gradually descends from C
to A.

When the radius of the circle is very great compared with e, or o
is very small compared with the radius, then p=1 and » is very small.
Thus the motion tends to the Keplerian circular motion in the limit

% 0. This is the case (XV). It is very curius that the planetary
ao - .
orbits in our Solar System are all of the kind of trajectories named

quasi-elliptic and indeed very near to the type (XV). This corresponds
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to the fact that the deviation from the Newtonain mechanics of the
actual sysfem existing in Nature is very small owing to the smallness
of o compared with a, If @, is near to «, then the deviation from the
Newtonian mechanics is remarkably great and the particle performs
several revolutions between two successive perihelia or aphelia.

It is to be remarked in this connection that Whittaker’s example”
of the singular circular orbifs can not exist physically. As stated above
there is no circular orbit in the domain r<<8e. Nevertheless Whittaker
treats such an orbit in the domain r<(3« and calculates the character-
istic exponents, proves that two of the four characteristic exponents do
not vanish, and finally concludes the behaviour of his singular circular
orbits.

4. Next we proceed to the computation of the second approxima-

’ﬂ’U)

tion for small values of g==¢ @i, 4. e, for the trajectories with small
deviation from the circular.

By (69) Chap. IV and from the discussion in the case (ILb) in
Chap. VI, we have

ot + B's=As(Y' + B1) + Z 1A"§Z7§;7;Sin —l)“;—w(‘[" + 6,
. e ®

91
U"—%:.:—BO'-Z B"q ,,,,, _.Cos %W(\[f’+[3]>,
= 1—q™
where
) ! 1 !
Ao:i{(ﬁz-"ﬁ)—KJ_,?.(1_@,2?/>(@_iy)JrK_{?z(Jz__%)‘L,
2 o/ pyN Py 0’/ 9P\e 3/ @1y
sin —~z ; ., sin Ty ,
P ) i T e 51
_ n g) y \ p q/ n g) ® ®
By="1,
@ . (91)’/
Bn:8<——7f—>d’n,
20
g=e et N

Inverting these infinite series (91) we get

1) E. T. Whittaker, Analytical Dynamics. Third Edition. (1927) p. 406.
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! 1 ' 4 l]2 ( ™ 'Cot-i-,@s,)
=-{¢t N —Lsin{ — . ————
V' + B AO(CL + B 4, 1— g in %% A
{Ao qa 1 Al q“ }in(ﬁ Coj—{—@'g) (92)
Ay1— q 2 Anz (1 \ 20 Ao
(14 3B ¢ .COS(_W_ Q\t+8'a> )
1—3B0 1 _qz 2w A[)
A el 4
2[1—-3B)\1— g Ao (1—8Bn 1-¢*
L1=3By) T|173B 1-¢* 201=3B." (l—g**
_ 65, é( q° )ZJ COS<2T»' Got-!—/g"a)
Q(J—SB(\) Ao l—qz \ 20 AO
[ R }
Denote the periods of ' with regard to t by 1%, that is, ‘
7= 274
Cp )
If ~21 is very near to 1 and can be put
()] .
1=
2w 2
then (92) and (93) become
2 : nt+63,
e Lt 15
v+ Bi= An(Co +85')— ol—{fsm n
{Az q* __ié q* }SM(&H@!)
Aol— Q 2 A1 qzjz 0
& iR ) (92)[
4 ¢* v 08(91&63’
.A[)l—-q2 2 Ao
A ¢* v S(@it@s)
Aol—gz48 A(\
o
L 8B
l——gBol—g Ag

N 1[ 3B, <_cj_f:>41+ 9Bf ( ¢ ”
211—8B N1 —¢¥ 4y (1—3B)\—¢*/ ]
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U . S
1-8Byl—¢* 201—3By)" (1—g*? .
30t 65, A1< q* ‘2J (Cot-}-lgs’)
= . — .= cosQ T8 '
"=18B, ) 2(1—8By) 4o 1-q2) A ¢ (99)
o
BB g (e )
3B.  ¢* v (at+B))
T1-8B1—g4s "\ 4 )
\ + ............ . ~ 7

Hence for very small values of v we can regard these expressions
as periodic in the period 7} formally.

Now
1 T 1 T ' ng? n
Py=——e " ( ) rrrrrrrrr —-8(——> 1" cos Y
Y 3 o 2o/ . o7y 2w ; —q* e
2w
=2y (2L (TS g o072
3 o 20/ . a2 20 / b 1 —q™ ®
sin®* == n=1
2w
_"L:L(L)z_&;(_l\z °°—, 9212 )
o 3\20 Zw)%(l—qzn)z'

4 By successive approximation from these series we get
3 (1=
(1__X2)2_ 144?(492 ’
(1—3)(1 4 2% — 144x'¢*
(L—x* —144x'¢*
3x*(2+x*)
(2+x")~144x'q"’
2(2+ (1 —x* —144x'¢*
(24— 144x*q"
2Y3 V14 27
(1—=x")

1+ 5y’
11—y’

sinyy= —

cosyy= ;

sin*yz =

COSZXZ =

sin 2yy=1.

cos 2xy=
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sin 2xz=w,
24+x

2—5x°
cos QXZ:-'————O—X—' ,

24+
where
-7
X= YN

Substituting these values in the expansions of the elliptic functions:

T
, = \ COS_‘Zm N . nTY
grm—t(Z) 2 o) S g
2w Sirg'ﬂ"v
20
cos® TV
" 7 \* 20 7 \ n*¢*  mmv
@'v=6 ol T) > e ,
20 wint ™ 20/ 547 1—¢q ®
2w
4 bad 21
Eo=""4"_ cotw—ﬂ+—zw g . sin?™Y. |
o) @ 2w w s 1—q™ w

we obtain

16y3 x*¢* (54 Tx"
(1—xV1+ 2y

ply=— 3v3<1 XIVIF 2x2+ 4.

p''y (l— (1+x2)—160xq,

r 21/2

q* (10—~ 2

(z+x2'v1fxz
"z 2 6(1—Tx"1x'q"

z—-—«“ ~v1 — +]/

‘ ‘/ = +) 5 RTESVICHPEI

ﬁ(l_gﬂ):_i__ 2+ (11 4+ 11" —4xY

'y 9%y V2 (1-abBa+2a2
_ i 2916(1+"(10 +81x*+ 31x")
VI =@+ 208
@)z _1/2 9 24+
PPy ¥ 32T A—yME 1 +20)

‘/ 162570+ 189x* 4- 159" + 14x° )
3 -+ e+
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N 2 2 2
é,y_g_g:_w1+_)x ; 24%°¢* (1 + 5x°)

V3" Y8 =X VL +2x
l—-l—:—l-— '2—8 202
0 3 3 Xt
and further by- (91)
AD:_"‘_V@_
'(l—x2)%

. [3 L X' (1685 4 6510+ 9369y* + 4772x°+ 852+ 72x" + 68x‘2)J
(L= XA 2+ )1 + 20> ’
A= 12y6 orx(14+ 27x* + 18x*) ’
(1—x)31+2x)(2 + %)

Bi= 8X27 9 i\),
From (91) we have
1 3w« (1 24x%q* \

P19\ 1—p?

=1 i‘ix"‘lz cosy(Y' + B1)

2q,22
*%&%COSQX(\V +8)

Hence if we compare this with the usual formula for the Keplerian

motion :
%—zl—e cos(\lf';i-ﬁl\, (95)
we gel
e— %9_ I
__3a__ 720y’ (96)
I—x* (1—=x""

It is to be remarked that the expansion for a stops at the second
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term in the Newtonian mechanics, while in the relativistic mechanics
the series is provided with an infinite number of terms.

Denote 2m 4y by T, as before, then
Co

27 dy_ 26 o | z(“'”")“’(g%) [

248
Go Co{l - (—7—2-—) }i
200

with

[ 8
w<l> — 16854 6510( ™ ) + 9369( ) n 4779(—”-) 852( )
2w 2w 2 2w

+7z<i) +68< 27; . (97)

In the limiting case in which we can write

with a small quantity v, we have

To:

P—
Y

=% 98)
4

QZZ otk _ ve}

64a 576(1—v)*’

e 2 1)
el
Hence the advance of the perihelion in one anomalistic year is

and

32
Ty (99)
coT(1—ep)

This is in good agreement with Einstein’s and reduces to (89) for e,=0.
For the general case we have, up to the order of ¢?

() ¥ ()
y _2V§7ra;‘f§*f1 o’e’ 20 20

N e i)

This leads to the génerahsed Keplerian third law :

© National Research Council of Japan ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1930JaJAG...8...67H

No. 3} THEORY OF THE RELATIVISTIC TRAJECTORIES ETC. 159

2 o3
e SToa
2
Co [4

o€’ (’27—;— >2\If (2—7;—>

x {1+ . . (100)
192a° 7 \ T\’ =\
1—(7-Y][e (_“) }[1 2 “‘)J
[ (20))}[ * 20/ . +(2w
A more general formula for (99) is
7y 2678
\ VR
00{1—(2@) )}
: *(5,)
1+ - (101)

e
G RIS
)2+ 1+2(-7-
20 ) (2(0 2w
This coincides with (90) when we make e=0.

5. The coefficients of the first two terms of (91) are shown in
(94). Hence by inverting these series we obtain

/
! +51:9fo(00t+,83’)-—~%[1q2 sin <L Lot +§3A>+ Cee
2&) A()

'
94.___3_{1_}_23192 COS(QL. ﬂéj‘_ﬁg_‘)_} e

[0 44[)
where

The arguments of the trigonometrical functions in these expressions
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. ™ T . .
contain — as the factors. If o is very near to 1, then our process is
w 0]

similar to Gylden’s expansions” of his absolute orbits in his theory of
absolute perturbations. Our orbits, being ellipses with moving perihelia
in the approximation so far carried out, are exactly Gylden’s absolute
orbits, which he adopted for the intermediate orbits for the planets and
for the Moon.” The following observation is sufficient to see the point.

2

lal
0

the trigonometrical expansions of the co-ordinates are integral multiples
of

=n is the mean motion in the longitude. The arguments of

T (ni18). (103)
2w
This is equivalent to
ni—w +-e,
with
W= (1 - ‘L)m‘,
()]
.
& ——‘2: :87
where @ is the longitude of the perihelion. 1——~2~7~r~ is of the order of :‘Z
0]

or of 8706. This quantity vanishes if we neglect the relativistic effect
over the Newtonian.

6. Suppose that 20 i exactly equal to an integer p. Then the
. w
arguments of the trigonometrical terms in the expansions become all

] ( Cr‘t+82

integral multiples of —
integ P R 4

the period p 7i. By (101) we get

). Hence the motion is periodic with

Ty= VO T2P_

& (1685p™ +6510p™ +9369p° + A772p° + 852p* +- 72+ 68)}
1728 PH2p*4-1) (p*+2) '

1) H. Gylden, Acta Math. 9 (1886) 185; 15 (1891) 65; 17 (1893) 1; Traité Analytiqi’
des Orbites _Absolues des Huit Planétes Principales (1893).
2) H. Gylden, Acta Math. 7 (1885) 125.
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The period of ¢’ with regard to ¢ is T, Hence the particle revolves p

times round the central body in one period of the motion. If we fix

a and disregard the arbitrary constants which refer to the origin of
the time and the origin of the longitude, we have an oo’ number of
periodic solutions with a varying parameter €. When e=0, the orbit

‘reduces to be circular. The period of the circular orbit is evidently

W Hence the circular orbits with the period 1o in the relalivistic
mechanics in the case (IIb) aré each surrounded by an infinite number
of periodic orbits of the periods p Tv. Thus this is a good example of
the periodic solutions of the second genus® of Poincaré.

Chapter XI.
GexcrAaL Expansions ror A Quasi-Errvipric Moriox,

I propose to perform the complete inversion of the series:

oo

ot B = Ao+ 8+ Ao sin BT (g 48,

9= 1"" )
1 < B nl ! i. (91)
— = — B,— N . nq n ! 3 )
(2 3 0 % —_q2m cos % .("[’ + 54 ’

~and to expand L and ¥’ as functions of et +©y. It will be proved
7

that such expansions are trigonometrical series with integral multiples
i
T  Col
Of Co +/@%
20) An
1. Consider an expression of the form :

as the arguments.

t=kv—cuysinv—oasin2v— .. .. .. —o,sinmo. (104)

Let the inverse function of this expansion be in the form :

=ty D7 ysin 2L, (105)
: k j=1 k
In order that this inversion be possible, the differential coefficient :
g—t:k — oty €08 v — 203 COS 20— .. .. .. —1N0LK COS MY, (106)
v :

ought not to vanish for any value of v in the domain under our con-

1) H. P. Poincaré, Méthodes Nouvelles de lo. Mécanique Céleste. T. 3. (1899); Hagiha-
ra, Japanese Journal of Astronomy and Geophysics. 5 (1927) 1.
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sideration, by a theorem in the theory of implicit functions. But it

is sufficient for the non-vanishing of —Zt—that we should have a rela-
v

tion: :
E>lon| +2|ca]+ -0 -0 oo +motl (107)
‘We agsume that this inequality holds throughout our discussion.
By differentiating (105) we get

7 dt L

If we multiply this expression by cos Z]; dt and integrate the result over
the interval 0=t{=m, then

o (- Horiic [ S

As =0 for t:O and v== for t:vr, we can change the independent
variable from ¢ to w.

2 0 k 0 =1k

Hence
CJ:E— cos (j'v >dv. (108)
Jm Yo
Define the Bessel functions of m variables :”
% _‘:_j(fuf -q;'j) )
¢t = Z (21, T2y -+ - - ;w~zn)@l.~ (109)

l=—00

Write L instead of » and —gz; instead of z;, then

v
35T (f _v«j> o
=1 2 Z’ . -1
6-7 — :L(_xl, —xg,.. ..’—Q/m)'v )
1=—o0
o0
4
= E J_z(fl'}l,xz, -~--75L‘1n>'v5
l=-o00

1) P. Appell, CR. 160.(1915) 419; 179 (1924) 437 ; Sur les Fonctions Hypergéométri-
ques de Plusieures Variables, les Polynomes d'Hermite et Autres Fonctions Sphériques
dans 'Hyperespace. (1925); J. Pérés, C.R. 161 (1915) 168; M. Akimoff, C.R. 163 (1916) 26;
165 (1917) 23; 179 (1924) 435; 185 (1927) 409, 435; B. Jekhowsky, C.R. 162 (1916) 318;
Bull. Soc. Math. France. [ii] 41 (1917) 58 ; C.R. 164 (1917) 719; 170 (1920) 1042 ; Bull. Astr.
35 (1918) 189, 145; C.R. 172 (1921) 1331 ; Journal des Observateurs. 10 (1927) No. 7 et No.
9 ; Humbert, Proc. Roy. Soc. Edinburgh. 41 (1920) 73.
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oo
= Z Jy (1, Xy - - oy )V

l=—00

Hence we get a relation:
J—-l("wly &2 .. - s "‘xm)—‘—’Jz (w1, L2y o ﬂ'x'm). (110)

Next write = instead of v and particularly put v=e¢"""", and separate
v

the real and the imaginary parts.
cos (ij sin jo)
j=1

:Z [%(xh X2y« vy xm) + J—l(xl,xz, e ,Tm>:] cOos l o,
= (111)

m

sin (Zw; sin jo)

J=1

::Z[Jl(xl, Xay oo oo stm) —J o (21, 22, - - -, 20)] sin l(p.)

Multiply these two expressmns by ©° ng respectively and integrate
sin

the result between o and 7, then we have (n=integer)

fﬁ COS NP COs (Za'j sinjq))d(p '
0

J=1

‘ :% [Jn(ﬂ'ly Lay v v xm) + J—n (1‘17 Xag -0 ooy fL‘m)],
(112)

f “sin ne sin (Zx, sin jm)dq)
0

J=1

:—‘2'”— [J;z(a'l; H T Tm)"!]'—n(ifly L2y.v vy xm)]-

Hence we get
f cos (mp——Zw, sinjqa) dp=md,(xi, 22, .- - 2m). . (118)
0 J=1

If we apply these formulae to (108), we have
C= 2y (o, e, o
j ; b ’ ’

k k k
Hence
=t 32 (20‘1 Jos Jon ) sin It 114
L;j PRUEERE o A MR
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2. Put

n
Z(-m,: k’vm b 2 (041 Sin- jlvnl + Hom,

j=1
and
tm S 2 7061 7'0(‘2 ,)'O( ) 3 Ii{
VU =——+ *‘]—< y Ty e ey T = sin-—"- SQ“““
i ,Zl PN & 3 Tk p
Then v
Svy= M]: +Z~2— J}(j%l—; e L‘Zﬁ) ( sinﬁtﬂTJ o) _ i b t]’”' J
“=1 ) " ; k 9
o, oc 1 ’].Ot1 ,7.05m . .7.#"7;1 jtm 7./"“m
= +4 ) - J; (—, S ﬁ> sin ==~ cos (——# +
i Z ik k J; I: 2 \
< Max. ’ ’:Um ! Fome

[ ...
As !ﬂ‘ is finite for all values of ¢, by (107), we can make v, as

| Otm
small as we please by choosing . sufficiently small. Suppose that
(107) holds for all integral values of m, that is, for m=1,2,... , and
that [e.| decreases towards zero as m increases indefinitely. Then, by

taking m sufficiently great, the inversion of
t=kv—cySin v—02sin 2v.. .. — oy, SN Mo — . . .

b

can be approximated as nearly as we please by a function :

t N2 jou ot fotm \ . jt
vV=—-+ “‘J( - s Ty e ey )SHL"——.
I Z i Nk s I i

v

Hence v—é is expanded in purely trigonometrical series with multi-

ples of {— as the arguments, provided that we disregard the convergency

of the expansion. This expansion, however, has a semi-convergent
character, as &v, vanishes with u, and u, tends to zero when we make
M0,
3. Put
s .
cos pq):ll)quZ Dy cos_ﬂ_,
2 = k

then

2 i it .
Dy=={ cos pvcos 2t g,
T J ]C
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Integrating this by parts, we have

5) o
Dj= “p?"f cos po sin 7% dv

) Yo
Zp,l.,f" . . < o .. )
== sin po sin P — — sin'{v |dv
i b / ( Z k
:p—k . cos< Ju—pv—j Z % ¢in Zw)d@
) Yo =k
—ﬁ‘fwcos(j®+pv—j >dv
) o =1
Therefore
D,——f’fv[‘f,_ (7“ Jer 126)_{;,(106 Jea M)J
J kEok Tk BN T WV |
Especially if j=0, we have
Do:g. ﬂcos [2) (lc—ZlocL cos lv\)d/u: — Pty
T Jo 1=1
Hence .
Cos Pu= _ﬁkofl N
1% JS%)_ . (LOCL jf‘;m.) Kk
+]’]»é_{[]:i ,n( S"""’ I J.—J"HJ ]‘77""7 k 7 .
= ‘ 11:
Similarly it
. sin —i/—
o 7041 ””706m J+( _2—06—7311—)}—
sin py= p]c> [f, p< W ) ) A o ;

4. Now let us apply these formulae to our problem (91). We have

m

. 20 A(\ A qn < NIy
t+~~":(~‘ ) (' +B)+ sin ="+ By).
Co m Cp 2(0 \V ;‘ Co 1— n ‘2(4) !
Put Ty B)=n, 22
2w T Co
n Al
é.”.___q_.?bz -0y, 4 E}; = t',
cl—g o
then we get
=kv— ZO‘” sin nwv.

=1

Inverting this by the above method (114), we obtain
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1y g 0t + B |
Y+ Bri= 4,
LN T (R T L
™ 51 : 2w A1~ qz)’ Q0. A4,(1 -—-g‘)’ " 90 Ay(1 ™

in (( (oot +B')
xsin ( att ). e

.Thus ' is expressed in terms of .
Next by (115) ’ '

o T (1 @ ) PAN"
cospgw(‘[’ +8) o1 — g
+pgﬁ)AO- > [L—ﬂ(;‘ WAlL:ﬁ S dng” 2m>
Tcy T=1 20401 —¢°) 20401 —g*")
N (L )]COS %0y
"\ Ay(1— ¢*) " 20401 - ¢*™) j ’
. ar 2(0.441) °° WA\(] 7 Ang™
inp T (¥ +8)=—p22b. > g (g e )
S npgw('\}’ 1) ,p 7T(,‘0 ;‘ ) J= ZQ)AO(l—qz) . 2(1.)‘/10(1—‘92”&)
Sin_jj‘(()ut_—liﬁla)
2 Ao 1 — g% 2041 —g¢*™)/ | J
Hence

1 S Bug”
wmg = = B cosp( T ),

l—g 20
Or U= %U—{-—Z?Bj CcOSs j(;(‘kl +181)>)
J=1 ®
‘where
B, = pA,,B_,,( ¢ Yi1_p,
( ; 2 1_ zp>+ Bl;
, 150 Byg? = d Ang™
B,—_L rq [J._ g AR
/ j;l—q” ! p(-Qon(l——qz)’ ’Qon(l—q‘z’"'))
—L+p( wéz? . ML)J
20 451 — q°) 2041 — Qm)

o . by . . .

Hence a.:g is Gylden’s protometer and e:;Qtﬁ is his diastematic mod-
- 0 - - 0

wlus in the approximation so far obtained.
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!
Thus L and (\If'+81)—~0—9%1———8i are periodic with the period dody
7

0 Co
in ¢ and can be expressed in purely trigonometrical series with multiples
!

m\C

of (et +B5")

2w .4,
5. To those who are not contented themselves with the above
semi-convergent process, the following method of procedure is recom-

as the arguments.

mended.
We are tempted to generalise the Bessel functions Ji(wi, 2, .. -, Zn)
to the case of an infinite number of parameters zy, 22, 25, -« - o) T, - - -

If Z{C/ﬂ)j —v7) is absolutely and uniformly convergent, then ej;%(v’-—v‘f)
J=1

represents a definite holomorphic function in a ring domain and it can
evidently be expanded into a convergent Laurent series:

(o]

Z Jj(wla Lag « v ooy Biny - - - -)”Ui,

J=—c0
in the same ring domain. Ji@i, 22 -+ ., %w, .. -.) is merely a functional

symbol representing the coefficient of the expansion. Thus Ji(x, zs, - . .
Zmy - - --) 18 defined by

iq

Xj, . . )

5 (W= v~7)

efmi2 = E iy, @2y -y Ty - - COh

c

1= —c0
or by
COS(Z% sinj<p>:2[,f(x1, Zay oy Bay )T Ty ey g )] COS L,
=1 l=1 )

sin (Zx, sinj(p):Z‘[Jl(xl, e By e =T @y, o @y - )] sin .
7=1

=1

As we have assumed that the series E l2;] 1is absolutely convergent,
J=1

o0
the series Exj sin jo represents a function of ¢, periodic in ¢ and
=1

o
. o . cos o
never becomes infinite in the whole domain of . Hence sin( E 2; 8in )(p)
. <
represents also a function of @ periodic in ¢ and never becomes infinite
in the whole domain of ¢. Hence the function can be expanded into
Fourier series of the above form by the well-known classical theorem
of Fourier.
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The expansibility is the more certain, if we remark the following
inequalities. '
By multiplying two expressions :

X
2 #"(1’-1_-0—_/) ‘ .
81‘12 = z Jl\l],(la’z, ey Ty - --)’l’,

l=~oco

co

2wy ;
c S -
e jo12 — J‘I.(TI; Dg ooy Ly v v - .)’L‘ s

l=—-00

side by side, we get a relation of the form:

1=FE,+ ZELQJJH" ZE—ZU—Z~
=1 =1

This holds for all values of v in the interval 0<|v|<<1. Hence we
ought to have

E[\:‘]J EL:O, E_z:‘O.
The first relation, when expanded, gives

o
‘i: E g]'lz(xl’xz,....,Q;m,....).

l=-—o0
From this we get
[ AT S S | R
and LTy, @y o vy @y - o ) ATy @y ooy @y e e )<
for all integral values of [.
The. difficulty lies only in the computation of the function Ji{zi, 2,

s Ty o)
To compute this function from the ordinary Bessel functions Ji(z),

we start with Jekhowsky’s formula :

J—Z(Ily T2y = vy x/n>:t]'0(xm)*]l(x1; e ey x//l——l)

o
+ZJ2p<xm>[!]L—2pm(fU1, crety Q}m‘—l)‘f“ t]l+2pm(fvl, ety xm—l)]
p=1

o
+Zj?p—l(fvm)[Jl—(21)—1)7;1(351, ceeny ?J:n)'—Jl-p(zz;-l)m(xl, ey 93»7,)]3
p=1

in which?

1) Watson, A4 Treatise on the Theory of Bessel Functions. (1922)
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’ @ z’ ot
Tiwy= = e T _ }
2", 241.(n—-1) 2 A2.n+1)n+2)

Hence in the limit ,—0 we have
!TL(ZUI; seomey xm)”‘*’t]},@;ly te oy fcm-1>~
This provides a new proof of the proposition in § 3.

Jekhowsky obtained a relation :

o
J-L(ﬂﬁ, ceey xm) = 2 Jit»qyzq?7l(iﬁly cee ey xz;z—l}tfqm(ﬂ:m)

U= =0
oo o0 o0
Y N .
= E E e 2 Jz_2q2_3q3, .. .__mqm(illj)lli(mz) qu(ﬁzm).
(2= —00 (3=—c0 U= =0
The con lputatlon of Jilws, -~ ,%m, .- ) by this method involves an

infinite process and the detailed discussion is postponed to future.

Similar formulae for pv to (115) are obtained for this case and
the results for ¢ and for \[f’ are only modified by putting s, 2, .- ., 2,
instead of x, 22, ..,2, In the arguments of Ji(xy, 22, .-, %)

It is interesting to remark in this connection that Jekhowsky’s
generalisation of Cauchy’s theorem, which is of use in the expansions
for a quasi-elliptic motion, can be stated, in our case of an infinite
number of parameters, as follows

Consider a finite determinate function S expanded in the formn

S= i P2
{=—co

The coefficient. P, is equal to the coefficient of s' in the expansion of a
function

r <
U= SZkZoc(a )L “12'—2,]“13 L 7)]
j=1

in powers of s and also it is equal to the coefficient of s' in the
expansion of

LN s
V:_k_@&eﬁ%],og;(&—s i)
l ds

in powers of s.
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SUMMARY.

1. The variational principle
], 21 31 4

8fds=0,  ds'= 2> gupduedas,

8

is proved’to. be equivalent to
1,23 4

1 dz. de
Sf Tdo=0,  T=2 2> gttt
7= 2 ZB I 4o 4o’
with an ;additional condition that, after determining x; as functions of o
. by 'treating the latter variational principle as though there were no re-
striction at all, we should determine a constant C* by the relation:

1,2 34

N Axadzs 2
o — :0 3
;3’ Jeb do do

as a function of the constants of integration, and finally put s=Co¢ with
this value of ¢. Here we can choose (°=1 at the outset. If we choose
(0*=0, then the trajectories thus obtained are those for the light rays.
"~ 2. If we form the characteristics of the Hamilton-Jacobi partial
differential equation of our problem, then those characteristics can be
transformed to the equations for the relativistic trajectories of a particle
in the classical treatment of the problem. The singularity in the varia-
tional problem does not occur in the actual trajectories.
8. The Hamilton-Jacobi partial differential equation can be in-
tegrated by the method of the separation of the variables. They can
be reduced to

_ZL_‘d _ du \
o WO ()
du
0= —dAlr, r
VO(@) v
. du _th()
1=V O(w)  ofhs
with
2
iy 5 o (s’ — 1) 1)
U)=u’—
()= —w' Rt

where ¢, and « are the constants in Schwarzschild’s line element, A and
hs are the constants of integration, s, f, ¥ and w are the proper time,

© National Research Council of Japan ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1930JaJAG...8...67H

No. 3] THEORY OF THE RELATIVISTIC TRAJECTORIES ETC. 171

the universal time, the argument of latitude, and the constant o divided
by the radius vector, respectively. The integration of these equations
provides us with two constants of integration, 8; and B, conjugate to
h: and hs. The other pair, h: and 3., enters only to specify the position
of the orbital plane. We do not count the constants corresponding to
the proper time. :

4. By choosing y and z so that

—_l “ ——2_
Py= 37 3')Z'~3>

the result of integration is

%(s%—ﬂo)zpiy[ <\IT+B‘ )C

—?/)"‘ (v +8) py

%{bg 0( 2_————-—— \1”-!—:81)@?!”
—(('ot+33\—— (Y +B1) z—log ( 2 +z>]
| (2]

‘ a<¢+ +?/> Iy
_giyl(\lwﬁnty—loga(i;@*y) ( g >
)28 )i

. («Jf—w&)
3 2

The radius vector 7, the longitude # and the latitude ¢ can be ob-
tained by the formulae:
r=—,
%
tan (04 Bz) =tanr.cos I,

cosp =sin . sin Y,
where

cosI:]—lE.

I
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5. Four discrete cases of the distribution of the roots of the funda-
mental cubic U(u)=0 among the singularities ©=0 and w=1 are dis-
2
tinguished. By writing 7\:?“-2, w="s", the domains of the various cases
i1
are shown in Fig. 2.
6. The following types of motion are obtained in the non-degenerate

cases of the elliptic functions. The roots of the fundamental cubic are

e:;+~})—< 62+%<€1+é, when they are real. (See, Figs. 3-8)

(34 (9]

Quasi-elliptic Ll =r= -2,
€+ 3 e+ —

Quasi-parabolic OL n =r=o00,
e+ 3

Quasi-hyperbolic Ll§7"< 00,
et

Pseudo-elliptic ol r=—2 1’

at s
Pseudo-parabolic a<r=00,
Pseudo-hyperbolic o << 00,

The limits of the domains with only inequality signs in this table
are those of asymptotic approaches. This asymptotic character is such
that the moving particle tends to a standing still at a definite point on
the circle r=o as the time tends to 400 and at another definite point
on the same circle as the time tends to —oo. The motion inside the
circle r=o is inadmissible from the principle of relativity. Even the
circle =0 is always situated inside a star of physically possible density
and the orbits tending to 7=« from outside are physically collisional
or ejectional. '

Each of the two trajectories, the quasi-hyperbolic and the pseudo-
hyperbolic, approaches to two distinct asymptotes, one for {—+00 and
the other for t——co. For the quasi-parabolic and the pseudo-parabolic
types these two asymptotes coincide on one straight line.

7. For the degenerate cases of the elliptic functions we get some
very interesting examples in dynamics. (See, Figs. 9-12) '
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C e . o
Quasi-elliptic spiral — ]l r=- , Ca==€1== €3,
, 1 1
€at 3 O3t
¢ 3]
. . s o .
Quasi-parabolic spiral ———<r=00,
eqat+ =

(3]

Quasi-hyperbolic spiral % <p<oo,

1
€q+-—
3
» i o
Pseudo-spiral ol p< e ep=ey=C3,
en-+ -
(9]
Pscudo-cireular r=38c, e1=es=e=0,
- o
Crireular Pr= —
et
(3]

The asymptotic approach to % _ is such that the particle per-

eqt+—
3

forms an infinite number of revolutions, tending to the circle indefinitely
as t—>+060 or as t—»—00. The asymptotic approach to r=a is the same
as before. The pseudo-circular type is the limiting type of the pseudo-
spiral and it can exist. This type of motion occurs only when the
three roots of the fundamental cubic coincide at r=38c. The approach
to the limiting circle is algebraic, while in the other cases it is trans-
cendental. The limiting circular motion other than the pseudo-circular
does not exist. The circular is the only type which is in connection
with the Newtonian trajectories. The quasi-elliptic spiral is doubly

.. M - » . o :
asymptotic in the sense of Poincaré. The circle r=—-— constitutes

a cycle limte of Poincaré. Such a motion can occur for the values of
» between 2a<r<S3a. As the circle r=o, or even the circle r=3e, is
situated deep in the interior of a star of physically possible density, these
interesting features unfortunately can not be physically realisable, if
Stoner’s limit for a star’s density is accepted.

8. The real expansions with real arguments for the co-ordinates
are also given for all these various types of motion.
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9. The types of motion corresponding to different points in Fig. 2
or in Fig. 18 are completely dealt with. The transitions of the types
of motion as we vary the parameters A and p are treated in detail.
(See, Figs. 13-14.)

10. The trajectory of a light ray is found to be the type, quasi-
hyperbolic, or pseudo-hyperbolic, or quasi-hyperbolic spiral, according to
the circumstances. For a physically existing star the pseudo-elliptic
type does not exist, though it can be imagined. Hence the statement
that a very massive star can entirely absorb the light emitted from its
surface and never be seen from outside, is quite fallacious. Even the
third type, the quasi-hyperbolic spiral, can not exist. Thus any observ-
er can see every physically existing star in the Universe.

11. A quasi-elliptic trajectory, endowed with the property of quasi-
periodic functions, covers the whole area of its domain of motion every-

where densely. There are two disposable constants, 21 and g=e “”,
w

corresponding to the period of the motion and to the amplitude between

the maximum and the minimum radii vectors, respectively. Supposing
!

that % is fairly great and \57'1 is nearly unity, we have Einstein’s for-

% ®
mula for the advance of the perihelion :
247,
Co Tg (l en )
/
For a general value of 5#' but with a fairly large values of 2 we have
Zw ' ]
o b M
P 2Y6 «wa e 2w
0= 14+—. S0 -
11 1728 (7 \* 7 \? 7 \*1?
S S
c"{ <2w } 2/ 1~ \20 __T<2co_j

where

- )f

)
ar 10 . o 12

+852(%> +72(27)> +68(~2~5> .

The generalised Kepler’s third law is
7\’ ( ar ) :
— ) I —

87" E.f o’e’ <Qm> 20

o e G T

(l\) 1685+6510( )+9369( )44772(
2w Yo

712_
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a and e correspond respectively to the semi-major axis and the
eccentricity in the Keplerian orbit. The orbits thus obtained are
identified with Gylden’s absolute orbifs.

When 22 is exactly equal to an integer, then the corresponding

m
circular orbit is proved to be a periodic solution of the second genus
of Poincaré. '
Whittaker’s example of the unstable singular circular orbits is
proved not to exist. . ‘
12. In order to write down the complete expressions of the co-
ordinates for a quasi-elliptic motion in trigonometrical series of {, Bessel

Junctions with several arguments are introduced. ¥'+ Bi———"=" and
0

1 are expressed in purely ftrigonometrical series with integral multiples

”

of 'n“(Cnt-‘-Ba)
Q(I)A.() :

of arguments are defined and employed.

13. It is pointed out as a remarkable fact that the trajectories of
the existing planets of the Solar System are of the type quasi-elliptic
but very near to the type of motion corresponding to small values of
A. This is closely related as a necessary consequence to the circum-
stance that the Newtonian kinetic energy at infinity is negative but very
nearly zero and at the same time the mass of the Sun is very small so
as to keep the relativistic trajectories with the least possible deviation
from the Newtonian.

as the arguments. Bessel functions with an infinite number

January, 1931. '
Astronomical Observatory,
Azabu, Tokyo.

Notes added on March 15.

1. After I sent this manuscript to the press I learnt through a paper by Infeld,
Phys. Zeits., 32 (1931) 110, that Synge had obtained before me a similar theorem to our
Corollary in our Chapter I. But his proof and his method of attack are quite different
from ours. Our Lemma is a generalisation of Synge’s theorem. Synge, Math. Ann., 99
(1928) 788, especially p. 751.

2. Recently McCrea and McVittie have deduced the line "element in a space with
a globular cluster or a nebula at the origin of the co-ordinate under the assumption that
the radius of the universe varies with the time according to Lemaitre. If we put the
cosmological term equal to zero and if the regions far from the origin are excluded from
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our consideration, then this line element was proved to reduce to Schwarzschild’s. Hence
the foregoing discussion is also valid for the motion of a star near but outside a globular
cluster or a nebula. McCrea and McVittie, M. N. 91 (1930) 128.

3. Milne has just proposed a new theory on the structure of the stars. If a star is
highly collapsed in the sense of Milne, that is, if the outer envelope of perfect gas and
the inner envelope of Fermi gas are both of the collapsed type and if the star is merely
of a bare incompressible core, then it would be possible to find out in the vicinity of
such a star an example of the interesting types of motion discussed in this paper. Milne,
M. N, 91 (1930) 4.

4. When we take the cosmological term into our account, the behaviour of the
motion at infinity in the above discussion is slightly modified. The-infinity in the above
treatment corresponds either to an infinity point or to a line at infinity according as
we adopt the pseudo-elliptic world of de Sitter or the cylindrical world of Einstein. The
projective properties are not modifled even if we consider the cosmological term. C7,
Klein, Gott. Nach. (1918) 394.

A Further Note.

According to Lewis the correspondence between a dynamical problem and its analogue
in geometry is due to Hertz. Lewis obtained another mode of correspondence between
these two when the potential function is not zero, on purpose of applying it to Schro-
dinger’s equation in wave mechanics. T. Lewis, Phil. Mag. [vii] 11 (1931) 753.
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